Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:15:41.207Z Has data issue: false hasContentIssue false

New Developments in Soluble Thermoplastic High Glass Transition Temperature Polyimides

Published online by Cambridge University Press:  15 February 2011

M. E. Rogers
Affiliation:
Department of Chemistry and The NSF Science and Technology Center: High Performance Polymeric Adhesives and Composites Virginia Polytechnic Institute and State University Blacksburg, VA 24061
T. M. Moy
Affiliation:
Department of Chemistry and The NSF Science and Technology Center: High Performance Polymeric Adhesives and Composites Virginia Polytechnic Institute and State University Blacksburg, VA 24061
Y. J. Kim
Affiliation:
Department of Chemistry and The NSF Science and Technology Center: High Performance Polymeric Adhesives and Composites Virginia Polytechnic Institute and State University Blacksburg, VA 24061
J. E. McGrath*
Affiliation:
Department of Chemistry and The NSF Science and Technology Center: High Performance Polymeric Adhesives and Composites Virginia Polytechnic Institute and State University Blacksburg, VA 24061
*
*To whom all correspondence should be addressed
Get access

Abstract

Utilizing solution imidization, molecular weight and end group control techniques, soluble, fully cyclized polyimides with very high glass transition temperatures have been developed to meet high temperature applications. Mechanistic aspects are investigated for solution imidization by both the polyamic acid route and by the ester-acid route. Polyimides based on pyromellitic dianhydride and a 3F diamine exhibit glass transition temperatures of 420 °C. These polyimides are soluble in polar aprotic solvents and form tough, transparent films which demonstrate mechanical integrity and thermooxidative stability at 700 °F. Various processing routes are explored to demonstrate the viability of these materials in high temperature applications. Details of the synthesis and characterization of these materials will be provided.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mittal, K.L. Ed., Polyimides: Synthesis, Characterization and Applications, Vol.1 & 2, (Plenum, N.Y., 1984).CrossRefGoogle Scholar
2. Feger, C., Khojasteh, M. M. and McGrath, J. E., Editors, Polyimides: Materials. Chemistry and Characterization, (Elsevier Science Publishers B. V., Amsterdam, 1989).Google Scholar
3. Wilson, D., Hergenrother, P., and Stenzenberger, H., Editors, Polyimides, (Blackie & Son Ltd., Glasgow and London, 1990).Google Scholar
4. Thayer, A. B., C & E News, July 23, (1990).Google Scholar
5. Krasovskii, A. N., Antonov, N. P., Koton, M. M., Kalmin'sh, K. K., Kudryavtsev, V. V., Polym.Sci. U.S.S.R, 21, 1038 (1979).Google Scholar
6. Baise, A. I., J. Appl. Sci., 32,4043 (1986).CrossRefGoogle Scholar
7. Waldbauer, R. O., Rogers, M. E., Arnold, C. A., York, G. A., Kim, Y. and McGrath, J. E., Polym. Prepr., 31 (2), 432 (1990).Google Scholar
8. McGrath, J. E., Rogers, M. E., Arnold, C. A., Kim, Y. J., Hedrick, J. C., Makromol. Chem., Macromol. Symp. 51,103 (1991).CrossRefGoogle Scholar
9. Rogers, M. E., Woodard, M. H., Brennan, A., Chain, P. M., Marand, H., McGrath, J. E., Polym.Prep., 33(1), 461 (1992).Google Scholar
10. Young, P. R., Chang, A. C., SAMPE J., 22,70 (1986).Google Scholar
11. Ning-Jo, Chu, Jian-Wen, Huang, Polym. J., 22, 725 (1990).Google Scholar
12. Ginsberg, R., Susko, J. R. in Polyimides: Synthesis. Characterization and Applications, Vol.1, edited by Mittal, K. L., (Plenum, New York, 1984) p. 237.Google Scholar
13. Brekner, M. J., Feger, C., J. Polym. Sci. A, 25,2005 (1987).CrossRefGoogle Scholar
14. Sacher, E., J. Macromol. Sci. Phys., B 25, 405 (1986).Google Scholar
15. Snyder, R. W., Thomson, B., Bartges, B., Czemiawski, d., Painter, P. C., Macromolecules, 22, 4166 (1989).Google Scholar
16. Kuroda, S. I., Mita, I., Eur. Polym. J., 25, 611 (1989).CrossRefGoogle Scholar
17. Koton, M. M., et. al., in Polyimides: Materials, Chemistry and Characterization edited by Feger, C., Khojasteh, M. M. and McGrath, J. E.,, (Elsevier Science Publishers B. V., Amsterdam, 1989) p. 403.Google Scholar
18. Edwards, W. M. and Robinson, I. M., US Patent 3,867,609 (1955)Google Scholar
19. Quenneson, M. E., Garapon, J., Bartholin, M. and Sillion, B., Proceedings from the Second International Conference on Polyimides, Ellenville, NY, 74 (1985).Google Scholar
20. Arnold, C. A., Summers, J. D., Chen, Y. P., Yoon, T. H., McGrath, B. E., Chen, d. and McGrath, J. E., Proceedings from the Third International Conference on Polyimides, NY, 69 (1989).Google Scholar
21. Rogers, M. E., Grubbs, H., Brennan, A., Rodrigues, D., Lin, T., Marand, H., Wilkes, G. L., and McGrath, J. E., 37th Int'l SAMPE Symp., 37, (1992).Google Scholar
22. McGrath, J. E., Grubbs, H., Rogers, M. E., Mercier, R., Joseph, W. A., Alston, W., Rodrigues, D. and Wilkes, G. L., Polym. Prepr., 32(2, 103 (1991).Google Scholar
23. Gungor, A., Smith, C. D., Wescott, J., Srinivasan, S., McGrath, J. E., Polym. Prep., 32(1), 172 (1991).Google Scholar