Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T06:42:58.035Z Has data issue: false hasContentIssue false

New Developments in Metal Ion Implantation by Vacuum Arc Ion Sources and Metal Plasma Immersion

Published online by Cambridge University Press:  21 February 2011

I.G. Brown
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
A. Anders
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
S. Anders
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
M.R. Dickinson
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
R.A. MacGill
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
O.R. Monteiro
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
E.M. Oks
Affiliation:
High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634050, Russia
S. Raoux
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 Applied Materials Corp., 3225 Oakmead Village Dr., Santa Clara, CA 95054
Z. Wang
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
G. Yushkov
Affiliation:
High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634050, Russia
Get access

Abstract

Ion implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a ‘metal plasma immersion’ configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the ion charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from ‘pure’ ion implantation at energies approaching the MeV level, through ion mixing at energies in the ∼1 to ∼100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here we review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See, for instance, the proceedings of the biennial conferences on Ion Beam Modification of Materials (IBMM), published in Nucl. Instr. and Meth., and on Surface Modification of Metals by Ion Beams (SMMIB), published in Surface and Coatings Technol.Google Scholar
2 See, for instance, “Ion Implantation and Plasma Assisted Processes”, edited by Hochman, R. F., Solnick-Legg, H. and Legg, K. O., (ASM, Ohio, 1988).Google Scholar
3 Plasma Processing and Synthesis of Materials, edited by Apelian, D. and Szekely, J., Mat. Res. Soc. Symp. Proc. Vol 98, (MRS, Pittsburgh, 1987).Google Scholar
4 Dearnaley, G., Nucl. Instr. and Meth. B50, 358 (1990).Google Scholar
5 Iwaki, M., Critical Rev. in Solid State and Mat. Sci., 15, 473 (1989).Google Scholar
6 Picraux, S.T. and Peercy, P.S., Scientific American, 252(3), 102 (1985).Google Scholar
7 Rehn, L.E. and Okamoto, P. R., Nucl. Instr. and Meth. B39, 104 (1989).Google Scholar
8 Wolf, G.K. and Ensinger, W., Nucl. Instr. and Meth. B59/60. 173 (1991).Google Scholar
9 See, for instance, the proceedings of conferences on Ion Implantation Technology (IΤ), and Ion Beam Modification of Materials (IBMM), both archived in Nucl. Intrum. Methods.Google Scholar
10 Brown, I.G., Rev. Sci. Instrum. 65, 3061 (1994). This journal issue contains a review of vacuum arc ion sources and also a collection of papers on this toipic by a number of authors from laboratories around the world.Google Scholar
11 Brown, I.G., Galvin, J.E. and MacGill, R.A., Appl. Phys. Lett. 47 (1985) 358.Google Scholar
12 See, for instance the Proceedings of the biennial International Conferences on Ion Sources: Rev. Sci. Instrum. 61 (No. 1, Pt. 2), January 1990, (ICIS'89); Rev. Sci. Instrum. 63 (No. 4, Pt. 2), April 1992, (ICIS'91); Rev. Sci. Instrum. 65 (No. 4, Pt. 2), April 1994, (ICIS'93).Google Scholar
13 Conrad, J.R., Radtke, J.L., Dodd, R.A., Worzala, F.J. and Tran, N.C., J. Appl. Phys. 62, 4591 (1987).Google Scholar
14 See the proceedings of the First International Workshop on Plasma-Based Ion Implantation, J. Vac. Sci. Tech. B12, 815998 (1994).Google Scholar
15 Brown, I.G., Godechot, X. and Yu, K.M., Appl. Phys. Lett. 58, 1392 (1991).Google Scholar
16 Brown, I.G., Anders, A., Anders, S., Dickinson, M.R., Ivanov, I.C., MacGill, M.A., Yao, X., and Yu, K.M., Nucl. Instrum. Meth. Phys. Res. B80/81. 1281 (1993).Google Scholar
17 Anders, A., Anders, S., Brown, I.G., Dickinson, M.R. and MacGill, R.A., J. Vac. Sci. Tech. B12, 815 (1994)Google Scholar
18 Sroda, T., Meassick, S. and Chan, C., Appl. Phys. Lett. 60, 1076 (1992).Google Scholar
19 Lafferty, J.M. (ed.), Vacuum Arcs - Theory and Application, Wiley, New York, 1980.Google Scholar
20 Boxman, R.L., Martin, P. and Sanders, D. (eds), Vacuum Arc Science and Technology. Noyes, New York, 1995.Google Scholar
21 For a most impressive and comprehensive bibliography of the vacuum arc literature see Miller, H.C., A Bibliography and Author Index for Electrical Discharges in Vacuum (1897 - 1986). pub. by the General Electric Co., document No. GEPP-TIS-366e (UC-13), March 1988; also published in part in IEEE Trans. Elec. Insul. 25(5), 765 (1990), and 26(5), 949 (1991).Google Scholar
22 See the Special Issues on Vacuum Discharge Plasmas in IEEE Trans. Plasma Sci. These issues contain selected papers from the biennial International Symposium on Discharges and Electrical Insulation in Vacuum. (Usually in the October issues in odd-numbered years).Google Scholar
23 Boxman, R.L., Goldsmith, S., Shalev, S., Yaloz, H. and Brosh, N., Thin Solid Films 139, 41 (1985).Google Scholar
24 Sanders, D.M., J. Vac. Sci. Tech. A7, 2339 (1989).Google Scholar
25 Tuma, D.T., Chen, C.L. and Davies, D.K., J. Appl. Phys. 49, 3821 (1978).Google Scholar
26 Daalder, J.E., Phvsica 104C. 91 (1981).Google Scholar
27 Aksenov, I.I., Belous, V.A., Padalka, V.G. and Khoroshikh, V. M., Sov. J. Plasma Phys. 4(4), 425 (1978).Google Scholar
28 Aksenov, I.I., Belokhvostikov, A.N., Padalka, V.G., Repalov, N.S. and Khoroshikh, V.M., Plasma Physics and Controlled Fusion 28, 761 (1986).Google Scholar
29 Storer, J., Galvin, J.E. and Brown, I.G., J. Appl. Phys. 66, 5245 (1989).Google Scholar
30 Anders, A., Anders, S. and Brown, I.G., Plasma Sources Sci. & Technol. 4, 1 (1995).Google Scholar
31 Anders, S., Anders, A. and Brown, I., J. Appl. Phys. 75, 4895 (1994).Google Scholar
32 Anders, A., Anders, S. and Brown, I., J. Appl. Phys. 75, 4900 (1994).Google Scholar
33 Brown, I.G. and Godechot, X., IEEE Trans. Plasma Sci. PS-19. 713 (1991).Google Scholar
34 Sasaki, J. and Brown, I.G., J. Appl. Phys. 66, 5198 (1989).Google Scholar
35 Sasaki, J., Sugiyama, K., Yao, X. and Brown, I.G., J. Appl. Phys. 73, 7184 (1993).Google Scholar
36 Brown, I.G., IEEE Trans. Plasma Sci. 21, 537 (1993).Google Scholar
37 Brown, I.G., Dickinson, M.R., Galvin, J.E., Godechot, X. and MacGill, R.A., Nucl. Instrum. Meth. Phys. Res. B55, 506, (1991).Google Scholar
38 Brown, I.G., Dickinson, M.R., Galvin, J.E., Godechot, X. and MacGill, R.A., J. Materials Eng. 13, 217 (1991).Google Scholar
39 Brown, I.G., Galvin, J.E., MacGill, R.A. and Paoloni, F.J., Rev. Sci. Instrum. 61, 577 (1990).Google Scholar
40 Brown, I.G., Dickinson, M.R., Galvin, J. E. and MacGill, R.A., Rev. Sci. Instrum. 63, 2417 (1992).Google Scholar
41 Anders, S., Anders, A., Brown, I.G., MacGill, R.A. and Dickinson, M.R., Rev. Sci. Instrum. 65, 1319 (1994).Google Scholar
42 Oks, E.M., Brown, I.G., Dickinson, M.R., MacGill, R.A., Emig, H., Spädtke, P. and Wolf, B.H., Appl. Phys. Letters. 62, 200 (1995).Google Scholar
43 Wolf, B.H., Emig, H., Spädtke, P. and Rück, D., Rev.Sci.Instrum. 65, 3091 (1994).Google Scholar
44 Brown, I.G., Galvin, J.E., MacGill, R.A. and Wright, R.T., Rev. Sci. Instrum. 58, 1589 (1987).Google Scholar
45 Koval, N.N., Mesyats, G.A. and Kreindel, Yu.E., Sov.Phys.-Dokl. 33, 442 (1988).Google Scholar
46 Lipin, Yu., Vacuum 41, 2217 (1990).Google Scholar
47 Ben-Shalom, A., Boxman, R.L. and Goldsmith, S., IEEE Trans. Plasma Sci. PS-21. 435 (1993).Google Scholar
48 Spädtke, P., Emig, H., Wolf, B.H. and Oks, E., Rev.Sci.Instrum. 65, 3113 (1994).Google Scholar
49 Bugaev, P., Nikolaev, A.G., Oks, E.M., Schanin, P.M. and Yushkov, G.Yu., Rev.Sci.Instrum. 65, 3119 (1994).Google Scholar
50 Brown, I.G., Anders, A., Anders, S., Castro, R.A., Dickinson, M.R., MacGill, R.A. and Wang, Z., 9th International Conference on Ion Beam Modification of Materials, Canberra, Australia, Feb 5–10, 1995; to be published in Nucl. Instrum. and Meth. Google Scholar
51 Anders, S., Anders, A., Brown, I.G., Wei, B., Komvopoulos, K., Ager III, J.W. and Yu, K.M., Surface and Coatings Technol. 68/69. 388 (1994).Google Scholar
52 Pharr, G.M., Callahan, D.L., McAdams, S.D., Tsui, T.Y., Anders, S., Anders, A., Ager III, J.W., Brown, I.G., Bhatia, C.S., Silva, S.R.P. and Robertson, J., submitted to Appl. Phys. Letters. Google Scholar
53 Anders, S., Anders, A., Bhatia, C.S., Raoux, S., Schneider, D., Ager III, J.W. and Brown, I.G., Proc. Third Int Conf on Applications of Diamond Films and Related Materials, Gaithersburg, MD, Aug 21–24, 1995, (NIST special pub. 885, Washington, DC, 1995), p. 809.Google Scholar
54 Raoux, S., Brown, I., Anders, S., Yu, K.M. and Ivanov, I.C., Materials Research Society Spring Meeting, San Francisco, CA, April 17–21, 1995; to be published in Mat. Res. Soc. Symp. Proc. (1995).Google Scholar