Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:40:46.177Z Has data issue: false hasContentIssue false

A New Class of Solar Cells: Isomeric Boron Carbide Semiconductors with Fourth Quadrant Conductivity

Published online by Cambridge University Press:  01 February 2011

Ravi B. Billa
Affiliation:
Department of Mechanical Engineering, University of Nebraska-Lincoln 245N WSEC, Lincoln, NE. 68588–0511 USA
A. N. Caruso
Affiliation:
Department of Physics, University of Nebraska-Lincoln 245N WSEC, Lincoln, NE. 68588–0511 USA
J. I. Brand*
Affiliation:
College of Engineering and Center for Materials Research and Analysis, University of Nebraska-Lincoln 245N WSEC, Lincoln, NE. 68588–0511 USA
*
* Author to whom correspondence should be addresed
Get access

Abstract

Previously, we have made diodes[1,2] and transistors [3] as well as very effective realtime solid state neutron detectors [4] out of semiconducting boron carbide deposited on silicon or silicon carbide‥

In this work the recent fabrication of a new class of highly photosensitive boron carbide diodes is discussed. These diodes exploit the electronic behavior differences of the isomers of film precursors, the closo-dicarbododecaboranes. These differences were observed in photoemission and inverse photoemission studies where the HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gap variations upon deposition varied strongly with the isomeric configuration. Based on these results, p-n junctions were formed by plasma enhanced chemical vapor of ortho and meta carborane, respectively, on both nickel and aluminum substrates. These diodes exhibit fourth-quadrant conductivity, making them exciting new photovoltaic conversion devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, SW; Dowben, PA; Applied Physics A 58 (3): 223227 (1994)Google Scholar
2. Byun, DG; Hwang, SD; Dowben, PA; Perkins, FK; Filips, F; Ianno, NJ. Applied Physics Letters 64(15): 19681970(1994)Google Scholar
3. Hwang, SD; Byun, D; Ianno, NJ; Dowben, PA; Kim, HR. Applied Physics Letters 68(11): 14951497(1996)Google Scholar
4. Robertson, BW; Adenwalla, S; Harken, A; Welsch, P; Brand, JI; Dowben, PA; Claasen, JP Applied Physics Letters 80(19): 36443646 (2002)Google Scholar
5. Adenwalla, S., Welsch, P., Harken, A., Brand, J.I., Sezer, A., Robertson, B.W., App. Phys. Lett. 79, 43574359 (2001)Google Scholar
6. Hwang, S.-D., Yang, K., Dowben, P.A., Ahmad, A.A., Ianno, N.J., Li, J.Z., Lin, J.Y., Jiang, H.X., McIlroy, D.N., Appl. Phys. Lett. 70, 10281030 (1997)Google Scholar
7. Casanova, , Joseph, (ed). “The borane, carborance, carbocation continuum.” John Wiley and Sones, New York. 1998.Google Scholar
8. Muetterties, Earl L. and Knoth, Walter M. Polyhedral Boranes. Marcel Decker. New York. 1968.Google Scholar
9. Caruso, A.N., Bernard, L., Dowben, P.A., J. Physical Chemistry 107, 96209623 (2003)Google Scholar
10. McIlroy, D.N., Zhang, J., Dowben, P.A., Heskett, D., Mat. Sci. Eng. A 217/218, 6468 (1996)Google Scholar
11. Byun, D., Spady, B.R., Ianno, N.J., Dowben, P.A., NanoStructured Materials 5, 465473 (1995)Google Scholar
12. Bernard, L., Caruso, A.N., Xu, B., Doudin, B., Dowben, P.A., Thin Solid Films 428, 253256 (2003)Google Scholar
13. Demuth, J.E., Thompson, W.J., DiNardo, N.J., Imbihl, R., Phys. Rev. Lett. 56, 14081411 (1986)Google Scholar
14. Alonso, M., Cimino, R., Horn, K., Phys. Rev. Lett. 64, 19471950 (1990)Google Scholar
15. Stiles, K., Kahn, A., Phys. Rev. Lett. 60, 440443 (1988)Google Scholar
16. Lee, S., Mazurowski, J., Ramseyer, G., Dowben, P.A., Journ. Appl. Phys. 72, 49254933 (1992)Google Scholar
17. Ahmad, A.A., Ianno, N.J., Snyder, P.G., Welipitiya, D., Byun, D., Dowben, P.A., J. Appl. Phys. 79, 86438647 (1996)Google Scholar