Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T02:22:00.824Z Has data issue: false hasContentIssue false

New Borate Structures for Nlo Applications

Published online by Cambridge University Press:  15 February 2011

Douglas A. Keszler
Affiliation:
Oregon State University, Department of Chemistry, Corvallis, OR 97331-4003
Annapoorna Akella
Affiliation:
Oregon State University, Department of Chemistry, Corvallis, OR 97331-4003
Kathleen I. Schaffers
Affiliation:
Oregon State University, Department of Chemistry, Corvallis, OR 97331-4003
Theodore Alekel III
Affiliation:
Oregon State University, Department of Chemistry, Corvallis, OR 97331-4003
Get access

Abstract

By considering selected examples of new structure types, guidelines are set forth for the synthesis of new solid-state inorganic borates that are likely to have desirable properties for nonlinear optical applications. The structures of two new, noncentrosymmetric orthoborate fluorides BaCaBO3F and Ba7(BO3)3F5 demonstrate a feasibility for controlling linear optical properties and for producing noncentrosymmetric borates that melt congruently. The structure of SrLi(B3O5)3 represents an additional example of a noncentrosymmetric borate resulting from chirality of the B3O7 ring. In addition to potential practical value, crystals of the type AMOB2O5 (A = K, Rb, and Cs; M = Nb and Ta) provide a unique means for examining the structural dependent interrelationships of linear and nonlinear optical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. author to whom correspondence should be addressed.Google Scholar
2. current address: Stanford University, Center for Materials Research, 105 McCullough Building, Stanford, CA 94305–4045Google Scholar
3. current address: Virgo Optics, 6736 Commerce Ave, Port Richey, FL 34668Google Scholar
4. Ballman, A. A., Amer. Mineral. 47, 1380 (1962); Y. X. Fon, R. Schlecht, M. W. Qin, D. Luo, A. D. Jiang, and Y. C. Huang, Technical Digest, Advanced Solid-State Lasers, 311 (1992).Google Scholar
5. Eimerl, D., Davis, L., Velsko, S., Graham, E. K., and Zalkin, A., J. Appl. Phys. 62, 1968 (1987); D. N. Nikogosyan, Appl. Phys. A 52, 359 (1991).Google Scholar
6. Chen, C., Wu, Y., Jiang, A., Wu, B., You, G., Li, R., and Lin, S., J. Opt. Soc. Am. B 6, 616 (1989).Google Scholar
7. Itoh, K., Marumo, F., and Kuwano, Y., J. Cryst. Growth 106, 728 (1990); H. Kouta, Y. Kuwano, K. Ito, and F. Marumo, J. Cryst. Growth 114, 676 (1991).Google Scholar
8. Chen, C. T., Sci. Sinica 22, 756 (1979); C. T. Chen and G. Z. Liu, Ann. Rev. Mater. Sci. 16, 203 (1986).Google Scholar
9. Schaffers, K. I., PhD thesis, Oregon State University, 1992.Google Scholar
10. crystal data for BaCaBO3F: Rigaku AFC6R diffractometer, a = 9.049(1), c = 4.326(1) Å, V = 306.74(8) Å3, space group P-62m, 511 unique data, R = 0.062, wR = 0.075.Google Scholar
11. crystal data for Ba7(BO3)3F5: Rigaku AFC6R diffractometer, a = 11.208(5), c = 7.250(2) Å, V = 788.7 (5) Å3, space group P31c, 745 unique data, R = 0.052, wR = 0.068.Google Scholar
12. crystal data for Ba3Sr4(BO3)3F5: Rigaku AFC6R diffractometer, a = 10.853(1), c = 6.945 Å, V = 708.5 Å3, space group P63mc, 1000 unique data, R = 0.043, wR = 0.056.Google Scholar
13. König, H. and Hoppe, R., Z. Anorg. Allg. Chem. 434, 71 (1978).CrossRefGoogle Scholar
14. Krogh-Moe, J., Acta Crystallogr., Sect. B 30, 1025 (1973).Google Scholar
15. Touboul, M., Compt. Rend., Sect. C 277, 1025 (1973); M. Gasperin, Acta Crystallogr., Sect. B 30, 1181 (1974).Google Scholar
16. crystal data for SrLi(B3O5)3: Rigaku AFC6R diffractometer, a = 10.610(1), c = 17,538(2)Å, V = 1709.9(4) Å3, space group R3c, 433 unique data, R = 0.051, wR = 0.067.Google Scholar
17. Eimerl, D., Velsko, S., Davis, L., Wang, F., Prog. Cryst. Growth Charact. 20, 59 (1990); S. P. Velsko, in Materials for Nonlinear Optics: Chemical Perspecties. ACS Sumposium Series No. 455, edited by S. Marder, J. Sohn, and G. Stucky (Washington DC: Am. Chem. Soc., 1991) p. 343.CrossRefGoogle Scholar
18. T. A. Alekel and D. A. Keszler, J. Solid State Chem., in press; Thompson, P. D., Huang, J., Smith, R. W., and Keszler, D. A., J. Solid State Chem. 95, 126 (1991).Google Scholar
19. RbNbOB2O5: Baucher, A., Gasperin, M., and Cervelle, B., Acta Crystallogr. 32, 2211 (1976).Google Scholar
20. crystal data for CsNbOB2O5: Rigaku AFC6R diffractometer, a = 7.527(2), b = 3.988(1), V = 291.7 Å3, space group Pmn2l, 862 unique data, R = 0.023, wR = 0.029.Google Scholar
21. For K derivative: Chai, B. H. T., University of Central Florida (private communcation).Google Scholar
22. crystal data for CsTaOB2O5: Rigaku AFC6R diffractometer, a = 7.548(1), b = 3.906(1), c = 9.771 (1) Å, V = 288.11(9) Å3, space group Pmn21, R = 0.057, wR = 0.071.Google Scholar