Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-15T22:54:03.326Z Has data issue: false hasContentIssue false

New Approaches to the Synthesis of Ladder Polymers: Copolymers of Aniline and Thiophene

Published online by Cambridge University Press:  26 February 2011

David W. Polis
Affiliation:
Department of Chemistry, University of Southern California, Los Angeles, CA 90089–0482
Larry R. Dalton
Affiliation:
Department of Chemistry, University of Southern California, Los Angeles, CA 90089–0482
David J. Vachon
Affiliation:
Lockheed Corporation, Rye Canyon, Valencia, CA
Get access

Abstract

We would like to report the synthesis of new third order nonlinear optical materials formed from reaction of dibromothiophenes with p-phenylenediamines under Ullmann condensation conditions. Initial measurements of the third harmonic NLO susceptibilities (X3~= 4 × 10−10 esu ), high laser damage thresholds ( 4 GW/cm2 ), and low absorptions have provided promising materials for device applications. Composite films in poly(vinylalcohol), poly(methylmethacrylate). or poly(carbonate) also gave significant X3 values in less than 10 percent w/w concentrations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Potember, R.S., Hoffman, R.C., Kim, S.H., Speck, K.R., Stetyick, K.A., J. Molecular Electronics 4, 5 (1988).Google Scholar
2. Dalton, L.R., Thomson, J., Nalwa, H.S., Polymer 28, 543 (1987).Google Scholar
3. Hellwarth, R.W., Cao, X.F., Jaing, J.P., Bloch, D.F., Yu, L.P., Dalton, L. R., (to be published).Google Scholar
4. Coter, F., Belaish, Y., Davidov, D., Dalton, L.R., Ehrenfreund, E.O., Mclean, M.R., Nalwa, H.S., Synthetic Metals (in press).Google Scholar
5. Mclean, M. R., Coter, F., Belaish, Y., Davidov, D., Dalton, L.R., Ehrenfreund, E.O., (work in progress).Google Scholar
6. Szita, J., Marvel, C.S., J. Polymer Sci.:Part A-1 7, 3203 (1969).; M.H. Litt, J.Z. Ruan, Macromolecules 21, 876 (1988).CrossRefGoogle Scholar
7. Renschler, C.L., Sylwester, A.P., Appl. Phys. Lett. 10 (20), 1420 (1987).Google Scholar
8. Callis, C.F., Norris, A.C., Carbon 10 (5), 525 (1972).Google Scholar
9. Middleton, W.J., Engelhardt, V.A., Fisher, B.S., J. Org. Chem. 40, 2822 (1957).Google Scholar
10. Eaton, D.E., Anderson, A.G., Tam, W., Wang, Y., J. Am. Chem. Soc. 109, 1886 (1987); M. VanGurp, G. VanGinkel, Y.K. Levine, J. Polymer Sci. :Part B: Polymer Phys. M, 1613 (1988).Google Scholar
11. Polis, D. W., Dalton, L.R., Vachon, D.J., (in preparation for macromolecules).Google Scholar
12. Motoyama, R., Sato, K., Imoto, E., Nippon Kagaku Zasshi 78, 779 (1957).; S. Izawa, J. Sugiyama, T. Tanaka, A. Nakanishi, T. Saiko, Jpn. Kokai Tokkyo Koho 79,16,566 (7 February 1979).CrossRefGoogle Scholar
13. Galbraith Laboratories, Knoxville, TN (private communication).; also see Litt, Ruan, (reference 6).Google Scholar
14. Young, C.L., Polis, D.W., Mclean, M.R., Dalton, L.R., (in preparation for macromolecules, to be presented at ASC meeting July, 1989).Google Scholar