Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T09:00:23.392Z Has data issue: false hasContentIssue false

A New Approach for Low Defect Density GaAs On Patterned Si Substrates by Mocvd

Published online by Cambridge University Press:  25 February 2011

N.H. Karam
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01801
V. Haven
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01801
K. Ismail
Affiliation:
IBM T.J. Watson Research Center, NY 10598
F. Legoues
Affiliation:
IBM T.J. Watson Research Center, NY 10598
J. Carter
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Henry I. Smith
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

High quality GaAs films have been deposited on sawtooth-patterned (0.2 μm period) Si substrates by MOCVD. Three inch diameter Si wafers were patterned using a combination of holographic lithography and wet chemical etching. A two-step deposition process was used resulting in planar films with surface morphology comparable to films deposited on unpatterned substrates. The initial low temperature nucleation layer was found to be amorphous and conformed to the patterned Si surface. Rapid thermal annealing and thermal cycle growth resulted in substantial reduction in the threading defect density. The MOCVD growth and characterization of these films and the possible mechanisms responsible for the reduction/elimination of the defects at the GaAs/Si interface are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.For a review see “Heteroepitaxy on Si I & II,” Mater. Res. Soc. (MRS) 67 (1986); 91 (1987).Google Scholar
2.“Heteroepitaxy on Silicon Fundamentals, Structures, and Devices,” MRS 116 (1988).Google Scholar
3.“IlI-V Heterostructures For Electronic/Photonic Devices,” MRS, 14 (1989).Google Scholar
4.“Epitaxial Heterostructures”, MRS, Vol. 198 (1990).Google Scholar
5. Fang, S.F., Adomi, K., Iyer, S., Morkoc, H., Zable, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, R33 (1990).Google Scholar
6. Choi, H.K., Mattia, J., Turner, G., Tsaur, B., IEEE EDL–9, (1988) 512; G. Turner, H.K. Choi, J. Mattia, C. Chen, S. Eglash and B. Tsaur, ref 2, p. 179.Google Scholar
7. Karam, N.H., Haven, V., Vernon, S., Ramdani, J., El-Masry, N., and Haegel, N., Proc. of the MRS fall meeting, Symup. D, Boston,MA 160. 457(1989); S.M. Vernon et al., ref3, P. 349.Google Scholar
8. Karam, N.H., Haven, V., Vernon, S., Tran, J. and El-Masry, N., Ref.3, P. 331; N. H. Karam, V. Haven and S. M. Vernon,N. EI-Masry, E.H. Lingunis, and N. Haegel, Proceedings of the MRS spring meeting, Symup.V, San Francisco, CA 198, 39, (1990).Google Scholar
9. Fitzgerald, E.A., Kirchner, P., Proano, R., Pettit, G., Woodall, J. and Ast, D., Appl. Phys. Lett. 52. 1496 (1988); E.A. Fitzgerald et al. J. AppI. Phys. 65. 2220 (1989).CrossRefGoogle Scholar
10. Karam, N. H., Haven, V., Vernon, S. M., El-Masry, N., Lingunis, E.H., and Haegel, N., J. Crystal Growth (1991); H.K. Choi, C.A. Wang and N.H. Karam, Presented at the Annual IEEE/LEOS meeting, Boston, MA, November (1990).Google Scholar
11. El-Masry, N.A., Tran, J.C. and Karam, N.H., J. App. Phys., 64. 3672 (1988).Google Scholar
12. Akiyama, M., Kawarada, Y., and Kaminishi, K., J. Cryst. Growth 68. 21 (1984).CrossRefGoogle Scholar
13. Deppe, D.J., Nam, D.W., Holonyak, N. Jr, Hsieh, K.C., Matyi, R.J., Shichijo, H., Epler, J.E., and Chung, H.F., Appl. Phys. Lett. 51. 1271 (1987).Google Scholar
14. Schattenburg, M.L, Canizares, C.R., and Smith, Henry I., Phsica Scripta 41. 13 (1990).Google Scholar
15. Ismail, K., Legoues, F., Karam, N.H., Carter, J. and Smith, H.I. submitted to Appl. Phys. Lett.Google Scholar
16. Karam, N.H., Mastrovito, A., Haven, V., Ismail, K., Pennycook, S. and Smith, H.I., J. Crystal Growth 107. 591 (1991)CrossRefGoogle Scholar