Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T19:57:26.733Z Has data issue: false hasContentIssue false

A New Approach for Industrial-Scale Production of Carbon Single-Walled Nanotubes

Published online by Cambridge University Press:  26 February 2011

A. R. Harutyunyan
Affiliation:
[email protected], Honda Research Institute Inc., 1381 Kinnear Rd, Columbus, Ohio, 43212, United States
E. Mora
Affiliation:
[email protected], The Ohio State University, Department of Physics, United States
T. Tokune
Affiliation:
[email protected], Honda Research Institute Inc., United States
Get access

Abstract

In the methods reported for continuous synthesis of carbon single-walled nanotubes (SWNTs), the typical production rates are less than 1 g h-1, after purification. Here we report the development of a new technique with higher production rates, up to 6 g h-1, and a scaling capability up to 220 g h-1. SWNTs are produced by vertical floating technique and continuous injection of pre-prepared supported catalyst powder.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cheng, H. M., Li, F.; Su, G., Pan, H. Y., He, L. L., Sun, X., and Dresselhaus, M. S., Appl. Phys. Lett. 72, 3282 (1998).Google Scholar
2. Bronikowski, M. J., Willis, P. A., Colbert, D. T., Smith, K. A., and Smalley, R. E., J. Vac. Sci. Technol. A 19, 1800 (2001).Google Scholar
3. Zhu, H. W., Xu, C. L., Wu, D. H., Wei, B. Q., Vajtai, R., and Ajayan, P. M., Science 296, 884 (2002).Google Scholar
4. Harutyunyan, A. R., Chen, G., and Eklund, P. C., Appl. Phys. Lett. 82, 4794 (2003).Google Scholar
5. Hayashi, T., Kim, Y. A., Matoba, T., Esaka, M., Nishimura, K., Endo, M., and Dresselhaus, M. S., Nano Letters 3, 887 (2003).Google Scholar
6. Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C., and Chen, J., Chem.Phys. Lett. 303, 467 (1991).Google Scholar
7. Zhang, Z. J., Wei, B. Q., Ramanath, G., and Ajayan, P. M., Appl. Phys. Lett. 77, 3764 (2000).Google Scholar
8. Kamalakaran, R., Terrones, M., Seeger, T., Kohler-Redish, P., Ruhle, M., Kim, Y. A., Hayashi, T., and Endo, M., Appl. Phys. Lett. 77, 3385 (2000).Google Scholar
9. Singh, C., Shaffer, M., Kinloch, I., and Windle, A., Physica B 323, 339 (2002).Google Scholar
10. Eklund, P. C., Pradhan, B. K., Kim, U. J., Xiong, Q., Fischer, J. E., Friedman, A. D., Holloway, B. C., Jordan, K., and Smith, M. W., Nano Letters 2, 561 (2002).Google Scholar
11. Ago, H., Ohshima, S., Uchida, K., and Yumura, M., J. Phys. Chem. B 105, 10453, (2001).Google Scholar
12. Alvarez, W. E., Balzano, L., Herrera, J. E., and Resasco, D. E., in Proceedings of NASA/Rice University Workshop on SWNT Growth Mechanisms, (Texas, 2003), p 88.Google Scholar
13. Harutyunyan, A. R, Pradhan, B. K., Kim, U. J., Chen, G., and Eklund, P. C., NanoLetters 2, 525 (2002).Google Scholar
14. Strumban, E. E., Dobrinsky, E. K., Kuznelsov., A. A. Harutyunyan, A. R., U. S. Patent No. 5,593,740 (14 January, 1997).Google Scholar
15. Murakami, Y., Miyauchi, Y., Chiashi, S., and Maruyama, S., Chem. Phys. Lett., 374, 53, (2003).Google Scholar
16. Cui, H., Eres, G., Howe, J. Y., Puretkzy, A., Varela, M., Geohegan, D. B., and Lowndes, D. H., Chem. Phys. Lett. 374, 222 (2003).Google Scholar