Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:37:06.555Z Has data issue: false hasContentIssue false

Neutron Irradiated Uranium Silicides Studied by Neutron Diffraction and Rietveld Analysis

Published online by Cambridge University Press:  26 February 2011

R. C. Birtcher
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
M. H. Mueller
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
J. W. Richardson Jr.
Affiliation:
Argonne National Laboratory, Argonne, IL 60439
Get access

Extract

The irradiation behavior of high-density uranium silicides has been a matter of interest to the nuclear industry for use in high power or low enrichment applications. Transmission electron microscopy studies have found that heavy ion bombardment renders U3Si and U3Si2 amorphous at temperatures below about 250 C [1], and that U3Si becomes mechanically unstable suffering rapid growth by plastic flow [2,3]. In this present work, crystallographic changes preceding amorphization by fission fragment damage have been studied by high-resolution neutron diffraction as a function of damage produced by uranium fission at room temperature. Initially, both silicides had tetragonal crystal structures. Crystallographic and amorphous phases were studied simultaneously by combining conventional Rietveld refinement of the crystallographic phases with Fourier filtering analysis of the non-crystalline scattering component [4].

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Walker, D. G., J. Nucl. Mat. 37, 48 1970).CrossRefGoogle Scholar
[2] Hofman, G. L., J. Nucl. Mat. 140, 256 (1986).CrossRefGoogle Scholar
[3] Birtcher, R. C., Allen, C. W., Rehn, L. E. and Hofman, G. L., J. Nucl. Mater. 152, 73 (1988).CrossRefGoogle Scholar
[4] Richardson, J. W. Jr. and Faber, J. Jr., Adv. X-ray anal. 29, 143 (1985).Google Scholar
[5] Birtcher, R. C., Blewitt, T. H., Kirk, M. A., Scott, T. L., Brown, B. S. and Greenwood, L. R., J. Nucl. Mater. 108 & 109, 3 (1982).CrossRefGoogle Scholar
[6] Greenwood, L. R., private communication.Google Scholar
[7] Parkin, D. M. and Elliott, R. O., Nucl. Inst. Meth. B 16, 193 (1986).CrossRefGoogle Scholar
[8] Rietveld, H. M., J. Appl. Cryst. 2, 65 (1969).CrossRefGoogle Scholar
[9] Jorgensen, J. D., Faber, J. Jr., Carpenter, J. M., Crawford, R. K., Hauman, J. R., Hitterman, R. L., Kleb, R., Ostrowski, G. E., Rotella, F. J. and Worlton, T. G., J. Appl. Cryst. 21, 321 (1989).CrossRefGoogle Scholar
[10] Zachariasen, W. H., Acta Cryst. 2, 94 (1949).CrossRefGoogle Scholar
[11] Kimmel, G. and Nadiv, S., Acta Cryst. B 31, 1351 (1975).CrossRefGoogle Scholar
[12] Blum, P. L., Silvestro, G. and Vangoyan, H., C. R. Acad. Sci. 260, 5538 (1964).Google Scholar
[13] Birtcher, R. C., Averback, R. S. and Blewitt, T. H., J. Nucl. Mat. 75, 167 (1978).CrossRefGoogle Scholar