Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:39:26.589Z Has data issue: false hasContentIssue false

Neutron Imaging Methods for the Investigation of Energy Related Materials (Fuel Cells, Battery, Hydrogen Storage and Nuclear Fuel)

Published online by Cambridge University Press:  01 February 2011

Eberhard Helmar Lehmann
Affiliation:
Pierre Oberholzer
Affiliation:
[email protected], Paul Scherrer Institut, ENE, Villigen, Switzerland
Pierre Boillat
Affiliation:
[email protected], Paul Scherrer Institut, ENE, Villigen, Switzerland
Get access

Abstract

This article underlines with examples of studies for energy related materials and processes how important and useful the technique of neutron imaging can be for our future energy supply. With the help of the particularly designed configurations for each such study it becomes possible to derive essential information for the material properties and their change in a non-invasive manner.

The four mentioned examples (PEM fuel cell, Li-battery, hydrogen storage and nuclear fuel inspection) cover a very wide range of applications and demonstrate the high potential of the various used methods in neutron imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Tremsin, A.S. McPhate, J.B. Vallerga, J.V. Siegmund, O.H.W. Hull, J.S. Feller, W.B. Lehmann, E. Nucl. Instr. and Meth. in Physics Research Section A, Volume 604, Issues 1-2, June 2009, Pages 140143 Google Scholar
2 Lehmann, E.H. Recent improvements in the methodology of neutron imaging, Pramana Journal of Physics, Vol. 71 (No. 4), Oct. 2008, ISSN 0304-4289Google Scholar
3 Lehmann, E.H. Frei, G. Vontobel, P. Josic, L. Kardjilov, N. Hilger, A. Kockelmann, W. Steuwer, A. Nucl. Instr. and Meth. in Physics Research Section A: Volume 603, Issue 3, 21 May 2009, Pages 429438 Google Scholar
4 Kardjilov, N. Lehmann, E. Steichele, E. Vontobel, P. Nucl. Instr. And Meth. A 527 (2004) 519 Google Scholar
5 Pfeiffer, F. Grünzweig, C., Bunk, O. Frei, G. Lehmann, E. David, C. Phys. Rev. Lett. 96, 215505 (2006)Google Scholar
6 D, M. Manke, I. Kardjilov, N. Hilger, A. Strobl, M. Banhart, J. New Journal of Physics 11 (2009) 043013 Google Scholar
7http://neutrons.ornl.gov/diagnostics/channel13/ch14.htmlGoogle Scholar
8 Filges, U. Redesign of the neutron optical instrument FUNSPIN into Silenos, Accepted proposal to the Swiss National Science Foundation, May 15th, 2009 9. http://user.web.psi.ch/Google Scholar
10 Kramer, D. Zhang, J. Shimoi, R. Lehmann, E. Wokaun, A. Shinohara, K. Scherer, G. Electrochimica Acta 50, 2603 (2005)Google Scholar
11 Lehmann, E. Frei, G. Kühne, G., Boillat, P. Nucl. Instr. And Meth. A 576 (2-3), (2007) 389 Google Scholar
12 Boillat, P. Frei, G. Lehmann, E. H. Scherer, G. G. and Wokaun, A. Electrochemical and Solid-State Letters, 13 (3) B25–B27 (2010)Google Scholar
13 Goers, D. Holzapfel, M. Scheifele, W. Lehmann, E., Vontobel, P. Noak, P. J. Power Sources, Vol. 130, pp. 221226 (2004)Google Scholar
14 Lehmann, E. Vontobel, P. Kardjilov, N. Hydrogen distribution measurements by neutrons, Applied Radiation and Isotopes 61 (4): 503509 OCT 2004 Google Scholar
15 Lehmann, E. Vontobel, P.., Wiezel, L. The investigation of highly activated samples by neutron radiography at the spallation source SINQ, Nondestr. Test. Eval. Vol. 16, pp. 203214, (YEAR-YEAR???)Google Scholar
16 Tamaki, M. et al. , Nucl. Instr. & Meth. in Phys. Res. A 542 (2005) 320323 Google Scholar
17 Grosse, M., Lehmann, E. Vontobel, P. Steinbrueck, M. Nucl. Instr. and Meth. in Phys. Res. 566 (2), 739745, (2006).Google Scholar