Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:42:22.988Z Has data issue: false hasContentIssue false

A Neutron Diffraction Study of Non-Stoichiometric Mn−1, O

Published online by Cambridge University Press:  28 February 2011

M. Radler
Affiliation:
Dept. of Materials Science & Engineering,The Technological Institute, Northwestern University, Evanston, IL 60208
J. Faber
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
J.B. Cohen
Affiliation:
Dept. of Materials Science & Engineering,The Technological Institute, Northwestern University, Evanston, IL 60208
Get access

Abstract

Rietveld analysis of Bragg intensities from in-situ neutron powder diffraction of nearly stoichiometric Mn 0.9990 0 reveals the presence of several percent Mn interstitials. Similar to isostructural Fe1−x 0, the cation interstitials are tetrahedrally coordinated in the rocksalt structure (Fm3m).

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koch, F. and Cohen, J.B. Acta Cryst. B25(2), 275 (1969).CrossRefGoogle Scholar
2. Hayakawa, M. PhD. Thesis, Northwestern University (1973).Google Scholar
3. Gartstein, E. PhD Thesis, Northwestern University (1984).Google Scholar
4. Grimes, R.W., Anderson, A.B., and Heuer, A.H. J. Am. Cer. Soc., 69, 619 (1986).CrossRefGoogle Scholar
5. Catlow, C.R., Mackrodt, W.C., Norgett, M.J., and Stoneham, A.M., Phil. Mag. A40, 161 (1979)CrossRefGoogle Scholar
6.M.R. Press PhD Thesis, Northwestern University (1986).Google Scholar
7. Kofstad, P. J. Phys. Chem. Solids, 44, 879 (1983).CrossRefGoogle Scholar
8. Price, J.B. and Wagner, J.B. Jr, J. Electrochem. Soc., 117, 242 (1970).CrossRefGoogle Scholar
9. Peterson, N.L. and Chen, W.K., J. Phys. Chem. Solids, 43, 29 (1982).CrossRefGoogle Scholar
10. Eror, N.G. and Wagner, J.B. Jr, J. Electrochem. Soc., 118, 1665 (1971).Google Scholar
11. Hed, A.Z. and Tannhauser, D.S., J. Chem. Phys., 47, 2090 (1967)CrossRefGoogle Scholar
12. O'Keefe, M. and Valigi, M., J. Phys. Chem. Solids, 31, 947 (1970).CrossRefGoogle Scholar
13. Pai, M. and Honig, J.M., J. Sol. State Chem., 40, 59 (1981).CrossRefGoogle Scholar
14. Hed, A.Z. and Tannhauser, D.S., J. Electrochem. Soc., 114, 314 (1967).Google Scholar
15. Sykora, G.P. PhD. Thesis, Northwestern University (1988).Google Scholar
16. Bransky, I. and Tallan, N.M., J. Electrochem. Soc., 118, 788 (1971).CrossRefGoogle Scholar
17. Davies, M.W. and Richardson, F.D., Trans. Farad. Soc., 55, 604 (1959).CrossRefGoogle Scholar
18. Birchenall, C.E., Met. Trans, 218, 1134 (1960).Google Scholar
19. Keller, M. and Dieckmann, R., Ber. Bunsenges. Phys. Chem., 89, 883 (1985).CrossRefGoogle Scholar
20. Roth, W.L., Acta Cryst., 13, 140 (1960).CrossRefGoogle Scholar
21. Cheetham, A.K., Fender, B.E., and Taylor, R.I., J. Phys. C, 4, 2160 (1971).CrossRefGoogle Scholar
22. Gavarri, J.R., Carel, C., and Weigel, D., J. Solid State Chem., 29, 81 (1979).Google Scholar
23. Radler, M. (Ph.D. thesis, in progress)Google Scholar
24. Cole, I. and Windsor, C.G., Acta Cryst., A36, 697 (1980).CrossRefGoogle Scholar
25. Rietveld, H.M, J. App. Cryst., 2 65 (1969).Google Scholar
26. Richardson, J.W. and Faber, J. Jr, Advances in X-ray Analysis, Vol. 29 Barrett, C.S., Cohen, J.B., Faber, J. Jr, Jenkins, R., Leyden, D.E., Russ, J. C., and Predecki, P. K., Editors, Plenum Publishing, 1986 Google Scholar
27. Hamilton, W.C., Acta Cryst., 18, 502 (1965)CrossRefGoogle Scholar