Article contents
Neptunium Speciation in Humic Acid-rich Clay Water upon Interaction With Radioactive Waste Glass Samples
Published online by Cambridge University Press: 11 February 2011
Abstract
Organic complexes of actinides are known to occur upon interaction of high level waste glass and Boom Clay which is a potential host rock formation for disposal of high level waste in Belgium. The solubility and mobility of 237Np, one of the most critical radionuclides, can be affected by the high dissolved organic carbon content of the Boom Clay porewater through complexation with the humic substances. The influence of humic substances on the Np behaviour is considered through dissolution tests of Np-doped glasses in Boom Clay water and through fundamental study of the specific interaction between Np(IV) and the humic acids using spectroscopic techniques. High Np(IV) concentrations are found in the glass dissolution tests. These concentrations are higher than what we should expect from the solubility of Np(OH)4, the solubility limiting solid phase predicted under the reducing conditions and pH prevailing in Boom Clay. Studying the specific interaction of Np(IV) with humic acids in Boom Clay porewater, high soluble Np concentrations are also measured and two main tetravalent Np-humate species are observed by UV-Vis spectroscopy. The two species are interpreted in terms of mixed hydroxo-humate complexes, Np(OH)xHA with x = 3 or 4. These species are the most likely species that can form according to the pH working conditions. Using thermodynamic simplified approaches, high complexation constants, i.e. log β131 and log β141 respectively equal to 46 and 51.6, are calculated for these species under the Boom Clay conditions.
Comparing the spectroscopic results of the dissolution tests with the study of the interaction of Np(IV) with humic substances, we can conclude that the complexation of Np(IV) with the humic acids may occur and increases the solubility of Np(OH)4 upon interaction of a Np-doped glass and the Boom Clay porewater.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003
References
REFERENCES
- 3
- Cited by