Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:33:03.207Z Has data issue: false hasContentIssue false

Nephila Clavipes Dragline Silk: Approaches to a Recombinantly Produced Silk Protein

Published online by Cambridge University Press:  15 February 2011

Get access

Extract

Spider silks exhibit an unusual combination of strength and toughness that distinguishes them from other natural and synthetic fibers. Silk proteins perform a key natural function as structural fibers, to absorb impact energy from flying insects without breaking. They dissipate energy over a broad area and balance stiffness, strength and extensibility (1,2). In addition to their unusual mechanical properties and visual lustre, silks also exhibit interesting interference patterns within the electromagnetic spectrum (3), unusual viscometric patterns related to processing (4), and piezoelectric properties (3,5,6). These properties suggest they would be good candidates for high performance fiber and composite applications. However, the spider is not capable of producing sufficient quantities of proteins to enable thorough evaluation of their potential. Consequently, we are pursuing recombinant DNA techniques to clone and express adequate quantities of recombinant spider silk for these studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gosline, J. M., DeMont, M. E. and Denny, M. W.. 1986. The structure and properties of spider silk. Endeavour 10(1): 3743.CrossRefGoogle Scholar
2. Gosline, J. M., Denny, M. W. and DeMont, M. E.. 1984. Spider Silk as rubber. Nature 309: 551552.Google Scholar
3. Craig, C. L. and Bernard, G. D.. 1989. Insect attraction to ultraviolet-reflecting spider webs and web decorations. Ecology 71(2): 616623.CrossRefGoogle Scholar
4. Mogoshi, J., Magoshi, Y. and Nakamura, S.. 1985. Crystallization, liquid crystal, and fiber formation of silk fibroin. J. Appl. Poly. Sci. 41: 187204.Google Scholar
5. Ando, Y., Okano, R., Nishida, K., Miyata, S. and Fukada, E.. 1980. Piezoelectric and related properties of hydrated silk fibroin. Reports on Prog. in Polymer Physics in Japan. 23: 775778.Google Scholar
6. Fukada, E. 1956. On the piezoelectric effect of silk fibers. J. Phys. Soc. Japan 12: 1301.Google Scholar
7. Lucas, F. Shaw, J. T. B. and Smith, S. G.. 1960. Comparative studies of fibroins I. The amino acid composition of various fibroin and its significance in relation to their crystal structure and taxonomy. J. Mol. Biol. 2: 339349 Google Scholar
8. Tillinghast, E.K. 1984. The chemical fraction of the orb web of Argiope spiders. Insect Biochem. 14(1): 115120.Google Scholar
9. Tillinghast, E. K. and Kavanagh, E. J.. 1977. The alkaline proteases of Argiope and their possible role in web digestion. J. Eap. Zool. 202: 213222.Google Scholar
10 Townley, M. A. and Tillinghast, E. K.. 1988. Orb web recycling in Araneus cavaticus (Araneae, Araneidae) with an emphasis on the adhesive spiral component, gabamide. J. Arachnol. 16: 303319 Google Scholar
11. Livengood, C. D. 1990. Silk. In Polymers-Fibers and Textiles A Compendium, 789797 (Kroschowitz, J. I. Ed.) Encyclopedia Reprint Series (John Wiley and Sons, New York).Google Scholar
12. Mello, C. M., Yeung, B., Senecal, K., Vouros, P., and Kaplan, D. L.. 1994. Initial characterization of Nephila clavipes dragline protein. In, Silk Polymers, Material Science and Biotechnology; Kaplan, D. L., Adams, W. W., Farmer, B., and Viney, C. Vol. 544 pp.6779.CrossRefGoogle Scholar
13. Zemlin, J. C. 1968. A study of the mechanical behavior of spider silks. Technical Report 69-29-CM (AD 684333), U. S. Army Natick Laboratories, Natick Massachusetts, USA.Google Scholar
14. Xu, M. and Lewis, R. V.. 1990. Structure of a protein superfiber: Spider dragline silk. Proc. Natl. Acad. Sci. USA. 87: 71207124.Google Scholar
15. Himman, M. B. and Lewis, R. V.. 1992. Isolation of a clone encoding a second dragline silk fibroin. J. Biol. Chem. 267: 1932019324.Google Scholar
16. Lombardi, S. J. and Kaplan, D. L.. 1990. The amino acid composition of major ampullate gland silk (dragline) of Nephila clavipes (Araneae, Tetragnthidae). J. Arachnol. 18: 297306.Google Scholar
17. Work, R. W. and Young, C. T.. 1987. The amino acid compositions of major and minor ampullate silks of certain orb-web building spiders (Araneae, Araneidae). J. Arachnol. 15: 6580.Google Scholar
18. Beckwitt, R. and Arcidiacono, S.. 1994. Sequence conservation in the c-terminal region of spider silk proteins (spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). J. Biol. Chem. (in press).Google Scholar
19. Kerkam, K., viney, C., Kaplan, D. and Lombardi, S.. 1991. Liquid crystallinity of natural silk secretions. Nature 349: 596598. Google Scholar