Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T02:22:42.993Z Has data issue: false hasContentIssue false

Negative Refractive Index of Meta-materials at Optical Frequencies

Published online by Cambridge University Press:  26 February 2011

S. Anantha Ramakrishna
Affiliation:
[email protected], Indian Institute of Technology Kanpur, Department of Physics, Department of Physics,, Indian Institute of Technology Kanpur, Kanpur, 208016, India
Sangeeta Chakrabarti
Affiliation:
[email protected], Indian Insitute of Tehcnology Kanpur, Department of Physics, Kanpur, 208016, India
Get access

Abstract

Scaling the performance of metamaterials to obtain negative refractive index at optical frequencies has been of great interest. One of the great barriers to the scaling is that real currents cannot be driven at very high frequencies and one is more dependent on displacement currents to generate negative magnetic permeability. Moreover to keep the dimensions of the metamaterials physically accessible, the structural lengthscales of the metamaterials begin approach the wavelength of the radiation in free space and homogenisation is often questionable. Here we will show that metamaterials such as Split ring resonators in these high frequency limits exhibit complex behaviour. Magnetic activity and Negative refractive index behaviour can, indeed, be obtained at optical frequencies but will need to be interpreted very carefully. The plasmonic nature of the metallic system and excitation needs to be considered in detail.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shelby, R., Smith, D.R. and Schultz, S., Science 92, 29 (2001)Google Scholar
2. Parazzoli, C.G., Greegor, R.B., Li, K., Koltenbah, B.E.C and Tanielan, N., Phys. Rev. Lett. 90, 107401 (2003).Google Scholar
3. Veselago, V.G., Usp. Fiz. Nauk, 92, 517 (1967); Veselago, V.G., Sov. Phys.Usp. 10, 509 (1968).Google Scholar
4. Ramakrishna, S.A., Rep. Prog. Phys. 68, 449 (2005)Google Scholar
5. Pendry, J.B., Phys. Rev. Lett. 85, 3966 (2000)Google Scholar
6. Ramakrishna, S.A. and Martin, O.J.F., Opt. Lett. 30, 2626 (2005)Google Scholar
7. Pendry, J.B., Holden, A.J., Robbins, D.J. and Stewart, W.J., IEEE Trans. Microwave Theory Tech. 47 2075 (1999)Google Scholar
8. Holden, A.J., Stewart, W.J., Youngs, I., Phys. Rev. Lett. 76, 4773 (1996); J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, J. Phys: Condens. Matter 10, 4785 (1998)Google Scholar
9. OBrien, S. and Pendry, J. B., J. Phys.: Condens. Matter 14, 6383 (2002).Google Scholar
10. Klein, M.W., Enkrich, C., Wegener, M., Soukoulis, C.M. and Linden, S., Opt. Lett. 31, 1259 (2006)Google Scholar
11. OBrien, S., McPeake, D., Ramakrishna, S. A. and Pendry, J. B., Phys. Rev. B 69, 241101(R) (2004)Google Scholar
12. Shalaev, V.M., Cai, W., Chettiar, U.K., Yuan, H-K., Sarychev, A.K., Drachev, V.P. and Kildishev, A.V., Opt. Lett. 30, 3356 (2005)Google Scholar
13. Dolling, G., Enkrich, C., Wegener, M., Zhou, J.F., Soukoulis, C.M. and Linden, S., Opt. Lett. 30, 3198 (2005).Google Scholar
14. Alu, A., Salandrino, A. and Engheta, N., Opt. Express, 14, 1557 (2006)Google Scholar
15. Pendry, J.B. and Mackinnon, A., Phys. Rev. Lett. (1992); Pendry, J.B., J. Mod. Opt. 41, 209 (1994)Google Scholar
16. Johnson, P.B. and Christy, R.W., Phys. Rev. B 6, 4370 (1972)Google Scholar
17. Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C.M. and Linden, S., Science 312, 892 (2006).Google Scholar
18. Podolskiy, V.A., Sarychev, A.K., Narimanov, E.E. and Shalaev, V.M., J. Opt. A: Pure Appl. Opt., 7, S32 (2005)Google Scholar