Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:29:14.235Z Has data issue: false hasContentIssue false

Negative Permeability of Single-ring Split Ring Resonator in the Visible Light Frequency Region

Published online by Cambridge University Press:  01 February 2011

Takuo Tanaka
Affiliation:
[email protected], RIKEN, Nanophotonics Lab., 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan, 048-462-1199, 048-467-9170
Atsushi Ishikawa
Affiliation:
[email protected], RIKEN, Nanophotonics Lab., 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
Satoshi Kawata
Affiliation:
[email protected], RIKEN, Nanophotonics Lab., 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
Get access

Abstract

Negative permeability of single-ring split ring resonator (s-SRR) is theoretically investigated in the visible light frequency region [1, 2]. To estimate magnetic responses of conductive elements precisely, we determined internal impedance by considering the delay of the current inside the metal structure. The increase of the surface resistivity, which is the real part of the internal impedance, results in the decrease of the resonator's Q-value. This means the degradation of the tunable range of the permeability. The increase of the internal reactance results in the reduction of the resonant frequency. In our calculation, the surface resistivity saturates at the inherent frequency of each metal as the frequency increases. On the silver case, the saturation value is 0.4 Ω and this value is remarkably smaller than that of gold and copper. On the other hand, the internal reactance is increasing as the frequency increases independently of metal. We concluded that the internal reactance is dominant factor to realize the negative magnetic permeability in the optical frequency region. We also show the frequency dependence of the magnetic permeability of s-SRRs. In the case of s-SRRs made of copper, the minimum value of the magnetic permeability becomes positive value at 550 THz even in the high filling factor condition (11%). In the case of s-SRRs made of gold, only on the filling factor was 11%, the minimum value of the magnetic permeability takes negative value in the entire visible range. On the other hand, the silver SRR exhibits negative magnetic permeability in the visible range even under the low filling factor condition of 3%. Moreover, we concluded that reducing the geometrical capacitance and using silver for SRR are necessary to realize the negative magnetic permeability in the visible light range.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pendry, J. B., Holden, A. J., Robbins, D. J., and Stewart, W. J., IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).Google Scholar
2 Shelby, R. A., Smith, D. R., and Shultz, S., SCIENCE 292, 77 (2001).Google Scholar
3 Veselago, V. G., Sov. Phy. Usp. 10, 509 (1968).Google Scholar
4 Yen, T. J., Padilla, W. J., Fang, N., Vier, D. C., Smith, D. R., Pendry, J. B., Basov, D. N., and Zhang, X., SCIENCE 303, 1494 (2004).Google Scholar
5 Zhang, S., Fan, W., Minhas, B. K., Frauenglass, A., Malloy, K. J., and Brueck, S. R. J., Phys. Rev. Lett. 94, 037402 (2005).Google Scholar
6 Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T., and Soukoulis, C. M., SCIENCE 306, 1351 (2004).Google Scholar
7 Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J. F., Koschny, Th., and Soukoulis, C. M., Phys. Rev. Lett. 95, 203901 (2005).Google Scholar
8 Panoiu, N.-C. and Osgood, R. M. Jr, Phys. Rev. E 68, 016611 (2003).Google Scholar
9 O'Brien, S. and Pendry, J. B., J. Phys.: Condens. Matter 14, 4035 (2002).Google Scholar
10 O'Brien, S., McPeake, D., Ramakrishna, S. A., and Pendry, J. B., Phys. Rev. B 69, 241101 (2004).Google Scholar
11 Zhou, J., Koschny, Th., Kafesaki, M., Economou, E. N., Pendry, J. B., and Soukoulis, C. M., Phys. Rev. Lett. 95, 223902 (2005).Google Scholar
12 Ishikawa, A., Tanaka, T., and Kawata, S., Phys. Rev. Lett. 95, 237401 (2005).Google Scholar
13 Johnson, P. B. and Christy, R. W., Phys. Rev. B 6, 4370 (1972).Google Scholar
14 Gupta, K. C., Garg, R., Bahl, I., Bhartia, P., Microstrip Lines and Slotlines 2nd ed. (Artech House, Boston, 1996).Google Scholar
15 Larkin, I. A., Stockman, M. I., Achermann, M., and Klimov, V. I., Phys. Rev. B 69, 121403 (2004).Google Scholar
16 Tanaka, T., Ishikawa, A., and Kawata, S., Phys. Rev. B 73, 125423 (2006).Google Scholar