Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T18:06:43.693Z Has data issue: false hasContentIssue false

The Necessity of RTCVD in Advanced Epitaxial Growth of Si and SiGe

Published online by Cambridge University Press:  15 February 2011

W. B. De Boer
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
M. J.J. Theunissen
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
R. H. J. Van Der Linden
Affiliation:
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
Get access

Abstract

Device-quality epi material can be grown at temperatures ranging from 600 to 800°C in commercially available production reactors. The exceptionally steep transitions of Ge, B and, to a lesser extent, P, are characteristics of Si and strained SiGe epi growth from dichlorosilane and germane in hydrogen ambient at atmospheric or reduced pressure. Although the growth rates depend on the dopant gas flows at low temperatures, layer thickness and doping level control is excellent. Selective multilayer growth at reduced pressure seems a viable process and can be applied in e.g. HBT's.

In spite of the fact that a lot of the progress in low-temperature epitaxy has been made in lampheated reactors, it is argued that RTP is not needed for low-temperature epitaxy. This is in contrast to conventional (high-temperature) epitaxy where RTP is becoming indispensable. Real RTP, heating and cooling the wafer in just a couple of seconds, would improve the throughput of the present generation single wafer epi reactors tremendously and seems feasible.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iyer, S.S. et al., IEEE Transactions on El. Dev. 36, 2043 (1989).Google Scholar
2. Meyerson, B.S., Ganin, E., Smith, D.A., Nguyen, T.N., J. Electrochem. Soc. 133, 1232 (1986).Google Scholar
3. Meyerson, B.S., Appl. Phys. Lett. 48, 797 (1986).Google Scholar
4. Meyerson, B.S., LeGoues, F.K., Nguyen, T.N., Harame, D.H., Appl.Phys.Lett. 50, 113 (1987).Google Scholar
5. Meyerson, B.S., Uram, K.J., LeGoues, F.K., Appl. Phys. Lett. 53, 2555 (1988).Google Scholar
6. Patton, G.L. et al., IEEE El. Dev. Lett. 11, 171 (1990).Google Scholar
7. Smith, F.W. and Ghidini, G., J. Electrochem. Soc. 129, 1300 (1982).Google Scholar
8. Ghidini, G. and Smith, F.W., J. Electrochem. Soc. 131, 2924 (1984).Google Scholar
9. Gibbons, J.F., Gronet, C.M., Williams, K.E., Appl. Phys. Lett. 47, 721 (1985).Google Scholar
10. Hoyt, J.L. et al., Thin Solid Films 184, 93 (1988).Google Scholar
11. King, C.A. et al., IEEE El. Dev. Lett. 10, 159 (1989).Google Scholar
12. Sedgwick, T.O., Berkenblit, M., Kuan, T.S., Appl. Phys. Lett. 54, 2689 (1989).Google Scholar
13. Agnello, P.D., Sedgwick, T.O., Meyer, D.J., Ferro, A.P., Proceedings of the first topical symposium on silicon based heterostructures (37th AVS Symposium), 46 (1990).Google Scholar
14. Kamins, T.I. and Meyer, D.J.,178th ECS Meeting Ext. Abstr. 902, 685 (1990).Google Scholar
15. Boer, W.B. de and Meyer, D.J., Appl. Phys. Lett. 58, 1286 (1990).Google Scholar
16. Oostrum, K.J. van et al., Appl. Phys. Lett. 61, 1513 (1992).Google Scholar
17. Grützmacher, D.A. et al., Appl. Phys. Lett. 63, 2531 (1993).Google Scholar
18. Sedgwick, T.O., Agnello, P.D., Ngoc, D. Nguyen, Kuan, T.S., Scilla, G., Appl. Phys. Lett. 58, 1896 (1991).Google Scholar
19. Agnello, P.D., Sedgwick, T.O., Catte, J., J. Electrochem. Soc. 140, 2703 (1993).Google Scholar
20. Lapiano-Smith, D.A., McFeely, F.R., J. Appl. Phys. 71, 4544 (1992).Google Scholar
21. Kamins, T.I., J. Appl. Phys. 74, 5799 (1993).Google Scholar
22. Sato, F. et al., IEEE IEDM 1992, Technical Digest 71, (1993).Google Scholar
23. Pruijmboom, A., to be published.Google Scholar
24. Sato, F., Tatsumi, T., Hashimoto, T., Tashiro, T., IEEE Transactions on El. Dev. 41, 137 (1994).Google Scholar