Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T23:50:22.790Z Has data issue: false hasContentIssue false

Near-field Nanoscale Investigation of Optical Properties of Bi2Se3 Thin-films

Published online by Cambridge University Press:  06 September 2013

Sarah E. Grefe
Affiliation:
California State University Long Beach, Department of Physics & Astronomy, 1250 Bellflower Blvd., Long Beach, CA 90840-9505, USA.
Malinda Tan
Affiliation:
California State University Long Beach, Department of Chemistry and Biochemistry, 1250 Bellflower Blvd., Long Beach, CA 90840-9507, USA.
Shahab Derakhshan
Affiliation:
California State University Long Beach, Department of Chemistry and Biochemistry, 1250 Bellflower Blvd., Long Beach, CA 90840-9507, USA.
Yohannes Abate
Affiliation:
California State University Long Beach, Department of Physics & Astronomy, 1250 Bellflower Blvd., Long Beach, CA 90840-9505, USA.
Get access

Abstract

Bi2Se3 thin films are imaged in the near-field using spectroscopic scattering type near-field optical microscopy (s-SNOM) at mid infrared laser wavelength region (9-11μm). Single phases Bi2Se3 thin film structures were prepared by mechanical exfoliation on silicon wafers. We report size and wavelength dependent near-field interaction contrasts in both optical amplitude and phase. We show that near-field optical imaging allows material specific identification and characterization of Bi2Se3 exfoliated samples including the confirmation of residual tape presence or removal in stacked films. We describe an alternative “shear exfoliation” sample preparation method which reliably deposits Bi2Se3 without the possibility of adhesive contaminants.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hasan, M. Z., and Kane, C. L., Rev. Mod. Phys. 82 (4), 30453067 (2010).CrossRefGoogle Scholar
Fu, L., Kane, C. L., and Mele, E. J., Phys. Rev. Lett. 98 (10), 106803 (2007).CrossRefGoogle Scholar
Hsieh, D., Xia, Y., Wray, L., Qian, D., Pal, A., Dil, J. H., Osterwalder, J., Meier, F., Bihlmayer, G., Kane, C. L., Hor, Y. S., Cava, R. J., and Hasan, M. Z., Science 323 (5916), 919-922 (2009).CrossRefGoogle Scholar
Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J. H., Meier, F., Osterwalder, J., Patthey, L., Checkelsky, J. G., Ong, N. P., Fedorov, A. V., Lin, H., Bansil, A., Grauer, D., Hor, Y. S., Cava, R. J., and Hasan, M. Z., Nature 460 (7259), 1101-1105 (2009).CrossRefGoogle Scholar
Efimkin, D. K., Lozovik, Y. E., and Sokolik, A. A., Nanoscale Res. Lett. 7(1), 163, (2012).CrossRefGoogle Scholar
Appelbaum, I., Drew, H. D., and Fuhrer, M. S., Appl. Phys. Lett. 98 (2), 023103 (2011).CrossRefGoogle Scholar
Fei, Z., Rodin, A. S., Andreev, G. O., Bao, W., McLeod, A. S., Wagner, M., Zhang, L. M., Zhao, Z., Dominguez, G., Thiemens, M., Fogler, M. M., Castro-Neto, A. H., Lau, C. N., Keilmann, F., Basov, D. N.. Nature 487(7405), 8285 (2012).CrossRefGoogle Scholar
Zhao, S. Y. F., Beekman, C., Sandilands, L. J., Bashucky, J. E. J., Kwok, D., Lee, N., a. LaForge, D., Cheong, S. W., and Burch, K. S., Appl. Phys. Lett. 98, 141911 (2011).CrossRefGoogle Scholar
Zareapour, P., Hayat, A., Zhao, S. Y. F., Kreshchuk, M., Jain, A., Kwok, D. C., Lee, N., Cheong, S.-W., Xu, Z., Yang, A., Gu, G.D., Jia, S., Cava, R. J., and Burch, S., Nat. Commun. 3, 1056 (2012).CrossRefGoogle Scholar
Cho, S., Butch, N. P., Paglione, J., and Fuhrer, M. S., Nano Lett. 11(5), 19251927 (2011).CrossRefGoogle Scholar
Nuño, Z., Hessler, B., Ochoa, J., Shon, Y.-S., Bonney, C., and Abate, Y., Opt. Express 19, 20865 (2011).CrossRefGoogle Scholar
Stiegler, J. M., Abate, Y., Cvitkovic, A., Romanyuk, Y., Huber, A. J., Leone, S. R., and Hillenbrand, R., ACS Nano 5, 6494 (2011).CrossRefGoogle Scholar
Ocelic, N., Huber, A., and Hillenbrand, R., Appl. Phys. Lett. 89 (101124) (2006).CrossRefGoogle Scholar
Hillenbrand, R. and Keilmann, F., Phys. Rev. Lett. 85 (14), 30293032 (2000).CrossRefGoogle Scholar
Abate, Y., Schwartzberg, A., Strasser, D., and Leone, S. R., Chem. Phys. Lett. 474 (1-3), 146152 (2009).CrossRefGoogle Scholar
Ogawa, Y., Minami, F., Abate, Y., and Leone, S. R., Appl. Phys. Lett. 96 (6), (2010).CrossRefGoogle Scholar
Cvitkovic, A., Ocelic, N., and Hillenbrand, R., Opt. Express 15 (14), 85508565 (2007).CrossRefGoogle Scholar
Ocelic, N. and Hillenbrand, R., Nature Mater. 3 (9), 606609 (2004).CrossRefGoogle Scholar
Taubner, T., Keilmann, F., and Hillenbrand, R., Opt. Express 13 (22), 8893 (2005).CrossRefGoogle Scholar
LaForge, A. D., Frenzel, A., Pursley, B. C., Lin, Tao, Liu, Xinfei, Shi, Jing, and Basov, D. N., Phys. Rev. B 81, 125120 (2010).CrossRefGoogle Scholar