Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:45:09.766Z Has data issue: false hasContentIssue false

Near-Edge X-Ray Absorption Fine Structure Examination of Chemical Bonding in Sputter Deposited Boron and Boron-Nitride Films

Published online by Cambridge University Press:  15 February 2011

A.F. Jankowski
Affiliation:
Lawrence Livermore Laboratory, Chemistry and Materials Science, Livermore, CA 94550
I. Jimenez
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
J.P. Hayes
Affiliation:
Lawrence Livermore Laboratory, Chemistry and Materials Science, Livermore, CA 94550
D.K. Shuh
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
W.M. Tong
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
D.G.J. Sutherland
Affiliation:
Lawrence Livermore Laboratory, Chemistry and Materials Science, Livermore, CA 94550
J.A. Carlisle
Affiliation:
Lawrence Livermore Laboratory, Chemistry and Materials Science, Livermore, CA 94550
L.J. Terminello
Affiliation:
Lawrence Livermore Laboratory, Chemistry and Materials Science, Livermore, CA 94550
F.J. Himpsel
Affiliation:
T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

Near-edge x-ray absorption fine structure (NEXAFS) is used to examine the chemical bonding in boron and boron-nitride films sputter deposited from a fully-dense, pure boron target. Reactive sputtering is used to prepare the boron-nitride and multilayered films. Although the process of sputter deposition often produces films that lack long range order, NEXAFS reveals the distinguishing features of sp2 and sp3 hybridization that are associated with different crystalline structures. The sensitivity of NEXAFS to local order further provides details in bonding modifications that exist in these films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kester, D., Alley, K., Lichtenwainer, D. and Davis, R., J. Vac. Sci. Technol. A 12, 3074 (1994).Google Scholar
2. Friedmann, T., Mirkarimi, P., Medlin, D., McCarty, K., Klaus, E., Boehme, D., Johnsen, H., Mills, M., Ottesen, D. and Barbour, J., J. Appl. Phys. 76, 3088 (1994).Google Scholar
3. Wada, T., and Yamashita, N., J. Vac. Sci. Technol. A 10, 515 (1992).Google Scholar
4. Tanabe, N., Hayashi, T. and Iwaki, M., Diamond Relat. Mater. 1, 883 (1992).Google Scholar
5. Barnett, S. and Shinn, M., Ann. Rev. Mater. Sci. 24, 481 (1994).Google Scholar
6. Makowiecki, D., Jankowski, A., McKernan, M. and Foreman, R., J. Vac. Sci. Technol. A 8, 3910 (1990).Google Scholar
7. McKernan, M., Makowiecki, D., Ramsey, P. and Jankowski, A., Surf. Coatings Technol. 49, 411 (1991).Google Scholar
8. Makowiecki, D. and McKernan, M., Fabrication of Boron Sputter Targets, U.S. Patent No. 5,392,981 (February 28, 1995).Google Scholar
9. Jankowski, A., Hayes, J., McKernan, M. and Makowiecki, D, Lawrence Livermore National Laboratory UCRL-JC- 121985 (1995) to be submitted for publication.Google Scholar
10. Zhang, F., Guo, Y., Song, Z. and Chen, G., Appl. Phys. Lett. 65, 971; 2669 (1994).Google Scholar
11. Terminello, L., Chaiken, A., Lapiano-Smith, D.A., Doll, G.L. and Sato, T., J. Vac. Sci. Technol. A 12, 2462 (1994).Google Scholar
12. Jimenez, I., Sutherland, D. G. J., Tong, W. M., Shuh, D. K., Carlisle, J. A.,Jankowski, A., Terminello, L. J., Doll, G. L. and Himpsel, F. J., Appl. Phys. Lett., in press (1996).Google Scholar
13. McLean, A.B., Terminello, L.J., and Himpsel, F.J., Phys. Rev. B 41, 7694 (1990).Google Scholar