Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:39:04.879Z Has data issue: false hasContentIssue false

Near Infrared Fluorescent and Phosphorescent Organic Light-Emitting Devices

Published online by Cambridge University Press:  31 January 2011

Yixing Yang
Affiliation:
[email protected], University of Florida, Department of Materials Science and Engineering, Gainesville, Florida, United States
Richard Farley
Affiliation:
[email protected], University of Florida, Department of Chemistry, Gainesville, Florida, United States
Timothy Steckler
Affiliation:
[email protected], University of Florida, Department of Chemistry, Gainesville, Florida, United States
Jonathan Sommer
Affiliation:
[email protected], University of Florida, Department of Chemistry, Gainesville, Florida, United States
Sang Hyun Eom
Affiliation:
[email protected], University of Florida, Department of Materials Science and Engineering, Gainesville, Florida, United States
Kenneth Graham
Affiliation:
[email protected], University of Florida, Department of Chemistry, Gainesville, Florida, United States
John Reynolds
Affiliation:
[email protected], United States
Kirk Schanze
Affiliation:
[email protected], University of Florida, Department of Chemistry, Gainesville, Florida, United States
Jiangeng Xue
Affiliation:
[email protected], University of Florida, Department of Materials Science and Engineering, Gainesville, Florida, United States
Get access

Abstract

Organic light-emitting devices (OLEDs) emitting near-infrared (NIR) light have many potential applications, yet the efficiency of these devices remains very low, typically ˜0.1% or less. Here we report efficiency NIR OLEDs based on two fluorescent donor-acceptor-donor oligomers and a phosphorescent Pt-containing organometallic complex. External quantum efficiencies in the range of 0.5–3.8% with emission peak ranging from 700 to 890 nm have been achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Slooff, L. H. Polman, A. Cacialli, F. Friend, R. H. Hebbink, G. A. Veggel, F. C. J. M. van, and Reinhoudt, D. N. Appl. Phys. Lett. 78, 2122 (2001).Google Scholar
2 Tessler, N. Medvedev, V. Kazes, M. Kan, S. and Banin, U. Science 295, 1506 (2002).Google Scholar
3 Priola, S. A. Raines, A. and Caughey, W. S. Science 287, 1503 (2000).Google Scholar
4 Sun, R. G. Wang, Y. Z. Zheng, Q. B. Zhang, H. J. and Epstein, A. J. J. Appl. Phys. 87, 7589 (2000).Google Scholar
5 Harrison, B. S. Foley, T. J. Bouguettaya, M. Boncella, J. M. Reynolds, J. R. Schanze, K. S. Shim, J. Holloway, P. H. Padmanaban, G. and Ramakrishnan, S. Appl. Phys. Lett. 79, 3770 (2001).Google Scholar
6 Sun, Y. Borek, C. Hanson, K. Djurovich, P. I. Thompson, M. E. Brooks, J. Brown, J. J. and Forrest, S. R. Appl. Phys. Lett. 90, 213503 (2007).Google Scholar
7 Skotheim, T. A. and Reynolds, J. R. Handbook of Conducting Polymers, 3rd ed. (CRC, New York, 2007).Google Scholar
8 Steckler, T. T. Abboud, K. A. Craps, M. Rinzler, A. G. and Reynolds, J. R. Chem. Commun. (Cambridge) 2007, 4904.Google Scholar
9 Thompson, B. C. Madrigal, L. G. Pinto, M. R. Kang, T.-S., Schanze, K. S. and Reynolds, J. R. J. Polym. Sci., Part A: Polym. Chem. 43, 1417 (2005).Google Scholar
10 Baldo, M. A. Thompson, M. E. and Forrest, S. R. Nature 403, 750 (2000).Google Scholar
11 Yang, Y. Farley, R. T. Steckler, T. T. Eom, S.-H., Reynolds, J. R. Schanze, K. S. and Xue, J. Appl. Phys. Lett. 93, 163305 (2008).Google Scholar
12 Forrest, S. R. Bradley, D. D. C. and Thompson, M. E. Adv. Mater. 15, 1043 (2003).Google Scholar