Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T20:16:57.606Z Has data issue: false hasContentIssue false

Near Gap Photoluminescence of GaAs Grown Directly on InP

Published online by Cambridge University Press:  28 February 2011

M. Lamont Schnoes
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
T.D. Harris
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
W.S. Hobson
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
R. M. Lum
Affiliation:
AT&T Bell Laboratories Holmdel, New Jersey 07733
J. K. Klingert
Affiliation:
AT&T Bell Laboratories Holmdel, New Jersey 07733
Get access

Abstract

We present a detailed photoluminescence and photoluminescence excitation study of GaAs grown directly on InP substrates by MOCVD. Reliable peak assignments are determined. With these peak assignments, we measure strain and strain uniformity, identify impurities, and assess material quality. Most samples exhibit three distinct spectral features. The two highest energy features are the strain split valence band, the third feature is a carbon impurity. The observed splitting is in good agreement with the value predicted from the thermal expansion mismatch.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zemon, S., Shasty, S.K., Norris, P., Jagannath, C., and Lambert, G., Solid State Communications 58, 457 (1986).Google Scholar
[2] Wilson, B.A., Bonner, C.E., Miller, R.C., Sputz, S.K., Harris, T.D., Lamont, M.G., Dupuis, R.D., Vernon, S.M., Haven, V.E., Lum, R.M., and Klingert, J.K., J. Electronic Materials 17, 115 (1988)CrossRefGoogle Scholar
[3] Harris, T.D., M.G. Lamont, Sauer, R., Lum, R.M., and Klingert, J.K., J. Appl. Phys. 64, 5110 (1988).Google Scholar
[4] Masselink, W.T., Henderson, T., Klem, J., Fischer, R., Pearah, P., Morkoc, H., Hafich, M., Wang, P.D., and Robinson, G.Y., Appl. Phys. Lett. 45, 1309 (1984).Google Scholar
[5] Duncan, W.M., Lee, J.W., Matyi, R.J., and Liu, H-Y, J. Appl. Phys. 59, 2161 (1986).Google Scholar
[6] Chakrabarti, U.K., Hobson, W.S., Swaminathan, V., Pearton, S.J., Nakahara, S., Schnoes, M. Lamont, Thomas, P.M., presented at the 1st International Conference on InP and Related Compound Semiconductors, Norman, Oklahoma, 1989.Google Scholar
[7] Lurm, R.M., Klingert, J.K., Blysma, R.B., Glass, A.M., Macrander, A.T., Harris, T.D., Lamont, M.G., Proceedings of Electrochemical Society, Heteroepitaxial Approaches in Semiconductors: Lattice Mismatch and its Consequences, Ed. Macrander, A.T. and Drummond, T.J..Google Scholar
[8] Harris, T.D., M. Lamont Schnoes, and Seibles, L., Anal. Chem. 61, 994 (1989).Google Scholar
[9] Lo, Y.H., Deri, R.J., Harbison, J., Skromme, B.J., Seto, M., Hwand, D.M., and Lee, T.P, Appl. Phys. Lett. 53, 1242 (1988).CrossRefGoogle Scholar
[10] Huang, D., Agarwala, S., and Morkoc, H., Appl. Phys. Lett. 54, 51 (1989).Google Scholar
[11] , Landolt and , Bornstein, Numerical and Functional Relationships in Science and Technology New Series. V. 17a, Madelung, O. Ed. P22 - 24, Sprainger-Verlag, NY, 1982.Google Scholar
[12] Thermophysical Properties of Matter, Series editor Touloukian, Y.S., Vols. 13. (Plenum Press, New York, 1975).Google Scholar
[13] Jordan, A.S., J. Cryst. Growth 71, 559 (1985).CrossRefGoogle Scholar
[14] Kudman, I. and Paff, R. F., J. Appl. Phys. 43, 3760 (1972)Google Scholar
[15] Sirota, N. N., Antyukhov, A. M., and Sidorov, A. A., Sov. Phys. Dokl. 29, 662 (1984)Google Scholar
[16] Dues, P., Schneider, H. A., Voland, U., and Stiehler, K., Phys. Stat. Sol. 103, 443 (1987)CrossRefGoogle Scholar