Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:32:59.893Z Has data issue: false hasContentIssue false

Near band-edge and excitonic behavior of GaAsN epilayers grown by Chemical Beam Epitaxy

Published online by Cambridge University Press:  26 February 2011

J. A. H Coaquira
Affiliation:
Photovoltaic and Nanostructure Group and Raman laboratory, Texas Center of Superconductivity and Advanced Materials, University of Houston, #724, S&R 1, Houston TX 77204–5004, USA
L. Bhusal
Affiliation:
Photovoltaic and Nanostructure Group and Raman laboratory, Texas Center of Superconductivity and Advanced Materials, University of Houston, #724, S&R 1, Houston TX 77204–5004, USA Department of Physics, University of Houston, S&R 1, Houston TX 77204–5004, USA
W. Zhu
Affiliation:
Photovoltaic and Nanostructure Group and Raman laboratory, Texas Center of Superconductivity and Advanced Materials, University of Houston, #724, S&R 1, Houston TX 77204–5004, USA Department of Physics, University of Houston, S&R 1, Houston TX 77204–5004, USA
A. Fotkatzikis
Affiliation:
Photovoltaic and Nanostructure Group and Raman laboratory, Texas Center of Superconductivity and Advanced Materials, University of Houston, #724, S&R 1, Houston TX 77204–5004, USA Department of Physics, University of Houston, S&R 1, Houston TX 77204–5004, USA
M.-A. Pinault
Affiliation:
Photovoltaic and Nanostructure Group and Raman laboratory, Texas Center of Superconductivity and Advanced Materials, University of Houston, #724, S&R 1, Houston TX 77204–5004, USA
A. P. Litvinchuk
Affiliation:
Photovoltaic and Nanostructure Group and Raman laboratory, Texas Center of Superconductivity and Advanced Materials, University of Houston, #724, S&R 1, Houston TX 77204–5004, USA Department of Physics, University of Houston, S&R 1, Houston TX 77204–5004, USA
A. Freundlich*
Affiliation:
Photovoltaic and Nanostructure Group and Raman laboratory, Texas Center of Superconductivity and Advanced Materials, University of Houston, #724, S&R 1, Houston TX 77204–5004, USA Department of Physics, University of Houston, S&R 1, Houston TX 77204–5004, USA
*
* Prof. Alex Freundlich: Email [email protected]; phone 713–743–3621; Fax 713–747–7724
Get access

Abstract

Photoluminescence and absorption spectroscopy experiments were performed on as grown and thermally annealed GaAs1-xNx with nitrogen content in the range of 0.75–7.1%. At low temperature, the photoluminescence spectra exhibits two set of features: (i) a relatively broad peak at low energy and near to the vicinity of the predicted band gaps and (ii) a sharp excitonic feature at higher energy (about 100 meV for x>4%). Post growth thermal annealing processes systematically favor stronger excitonic emissions, and a notable intensity reduction of the deeper (defect related) luminescence. The low temperature binding energy of the higher energy excitonic peak is found to be consistent with the increase of the electronic effective masses. A careful examination of the data obtained in this work suggests that for higher nitrogen content (x>4%), the fundamental band gap of GaAsN is located at significantly higher energies than those commonly accepted for these alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kurst, S.R., Allermann, A.A., Jones, D.E., Gee, J.M., Banas, J.J. and Hammons, B.E., Appl. Phys. Lett. 74, 729 (1999).Google Scholar
2. Kent, P.R.C. and Zunger, A., Appl. Phys. Lett. 82, 559 (2003).Google Scholar
3. Taliercio, T., Intartaglia, R., Gil, B., Lefebvre, P., Bretagnon, T., Tisch, U., Finkman, E., Salzman, J., Pinault, M.-A., Laugt, K. and Tournie, E., Phys. Rev. B 69, 073303 (2004).Google Scholar
4. Shan, W., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R., Xin, H.P. and Tu, C.W., Phys. Stat. Sol. (b) 223, 75 (2001).Google Scholar
5. Skierbiszewski, C., Perlin, P., Wisniewski, P., Suski, T., Walukiewicz, W., Shan, W., Yu, K.M., Ager, J.W., Haller, E.E., Geisz, J.F. and Olson, J.M., Appl. Phys. Lett. 76, 2409 (2000).Google Scholar
6. Francoeur, S., Sivaraman, G., Qiu, Y., Nikishin, S. and Temkin, H., Appl. Phys. Lett. 72, 1857 (1998).Google Scholar
7. Bi, W.G. and Tu, C.W., Appl. Phys. Lett. 70, 1608 (1997)Google Scholar
8. Loke, W.K., Yoon, S.F., Wang, S.Z., Ng, T.K. and Fan, W.J., J. Appl. Phys. 91, 4900 (2002).Google Scholar
9. Rao, E.V.K., Ougazzaden, A., Le Bellego, Y. and Juhel, M., Appl. Phys. Lett. 72, 1409 (1998).Google Scholar
10. Grenouillet, L., Bru-Chevallier, C., Giullot, G., Gilet, P., Duvaut, P., Vannuffel, C., Million, A. and Chenevas-Paule, A., Appl. Phys. Lett. 76, 2241 (2000).Google Scholar
11. Fotkatzikis, A., Pinault, M.-A., Freundlich, A., Appl. Phys. Lett. 85, 2432 (2004)Google Scholar
12. Pinault, M.A., and Freundlich, A., private copmmunication Google Scholar
13. Makimoto, T., Sato, H., Nishida, T. and Kobayashi, N., Appl. Phys. Lett. 70, 2984 (1997).Google Scholar
14. Zhang, Y., Mascarenhas, A., Geisz, J.F., Xin, H.P. and Tu, C.W., Phys. Rev. B 63, 085205 (2001).Google Scholar
15. Peyghambarian, N., “Introduction to semiconductor optics” ed. Peyghambarian, N., Koch, S.W. and Mysyrowicz, A. (Prentice-Hall Inc., 1993) p. 127.Google Scholar
16. Chuang, Shun Lien, “Physics of Optoelectronic Devices”, (Wiley, 1995) p.151 Google Scholar
17. Buyanova, I. A., Chen, W. M. and Monemar, B., MRS Internet J. Nitride Semicond. Res. 6, 2 (2001).Google Scholar