Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T22:58:33.721Z Has data issue: false hasContentIssue false

NdFeB Magnets with Improved Temperature Characteristics

Published online by Cambridge University Press:  25 February 2011

B. M. Ma*
Affiliation:
Crucible Research Center, P. O. Box 88, Pittsburgh, PA 15230
Get access

Abstract

The temperature dependence of magnetic properties for NdFeCoB alloys were investigated. It is well known that dysprosium substitution for neodymium increases the intrinsic coercivity. Aluminum also improves the intrinsic coercivity, Hci, at room temperature but impairs the Curie temperature and the intrinsic coercivity at elevated temperatures. The rate of increase of the Hci with increasing dysprosium in the NdFeCoB system is less than when dysprosium is added to the NdFeB system. A combination of aluminum and dysprosium is more effective than aluminum alone in raising Hci. Molybdenum addition into the NdDyFeCoB alloy was found to reduce the temperature coefficients of Br and Hci. Temperature coefficients of Br and Hci obtained on a Nd10Dy5Fe67Co10Mo1Al1B6 alloy are -0.07 %/°C and -0.4 %/°C respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H., and Matsuura, Y., J. Appl. Phys., 55, 2083 (1984).Google Scholar
[2] Sagawa, M., Hirosawa, S., Yamamoto, H., Matsuura, Y., Fujimura, S., Tokuhara, H., and Hiraga, K., IEEE Trans. on Magn., MAG–22, 910 (1986).Google Scholar
[3] Ma, B. M. and Narasimhan, K. S. V. L., IEEE Trans. on Magn., MAG–22, 1081 (1986).Google Scholar
[4] Narasimhan, K. S. V. L., J. Appl. Phys. 57, 4081 (1985).Google Scholar
[5] Ma, B. M. and Narasimhan, K. S. V. L., J. Magn. Magn. Mat. 54–57, 559 (1986).Google Scholar
[6] Herbst, J. F., Croat, J. J., and Yelon, W. B., J. Appl. Phys. 57, 4086 (1985).Google Scholar
[7] Herbst, J. F., Yelon, W. B., J. Appl. Phys. 60, 4224 (1986).Google Scholar
[8] Sagawa, M., Matsuura, Y., Fujimura, S., Yamamoto, H., and Hirosawa, S., IEEE Translation Journal on Magnetics in Japan, Vol.1, TJMJ-l, 48 (1985).Google Scholar
[9] Burzo, E., Pedziwiatr, A. T., and Wallace, W. E., Solid State Commun. 61, 57 (1987).Google Scholar
[10] Ma, B. M. and Narasimhan, K. S. V. L., IEEE Trans. on Magn., MAG–22, 916 (1986).Google Scholar
[11] Mizoguchi, T., Sakai, I., Niu, H., and Inomata, K., IEEE Trans. on Magn., MAG–22, 919 (1986).Google Scholar
[12] Buschow, K. H. J., Rare Earth Compound in Ferromagnetic Materials, Vol. 1, edited by Wohlfarth, E. P., North-Holland Publishing Co., Amsterdam, p. 385–387, (1980).Google Scholar
[13] Fujii, H., Wallace, W. E. and Boltich, E. B., J. Magn. Magn. Mat., 61, 251 (1986).Google Scholar
[14] Shen, X., Wang, Y., Diao, Z., Liu, X., 31st Annual Conference on Magnetism and Magnetic Materials, Baltimore, U. S. A., November 1986.Google Scholar