Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T02:41:29.289Z Has data issue: false hasContentIssue false

Nd-Doped Zirconolite Ceramic and Glass Ceramic Synthesized by Melting and Controlled Cooling

Published online by Cambridge University Press:  10 February 2011

T. Advocat
Affiliation:
Commissariat à l'Energie Atomique (CEA), Rhone Valley Research Center, DRDD/SCD, BP 171, 30207 Bagnols-sur-Céze, France
C. Fillet
Affiliation:
Commissariat à l'Energie Atomique (CEA), Rhone Valley Research Center, DRDD/SCD, BP 171, 30207 Bagnols-sur-Céze, France
J. Marillet
Affiliation:
Laboratoire des Verres, UMR 5587, CC 069, Place Eugéne Bataillon, 34095 Montpellier Cedex 5, France
G. Leturco
Affiliation:
Commissariat à l'Energie Atomique (CEA), Rhone Valley Research Center, DRDD/SCD, BP 171, 30207 Bagnols-sur-Céze, France
J.M. Boubals
Affiliation:
Commissariat à l'Energie Atomique (CEA), Rhone Valley Research Center, DRDD/SCD, BP 171, 30207 Bagnols-sur-Céze, France
A. Bonnetier
Affiliation:
Laboratoire des Verres, UMR 5587, CC 069, Place Eugéne Bataillon, 34095 Montpellier Cedex 5, France
Get access

Abstract

Neodymium-doped zirconolite materials may be synthesized by two melting processes. One involves devitrification of an aluminosilicate parent glass containing titanium, zirconium and neodymium oxides, yielding a glass ceramic comprised of submicron zirconolite needles embedded in a silica-rich glass matrix. The second method consists of melting an oxide mixture with the stoichiometry of a highly Nd-enriched zirconolite, then quickly cooling the melt to produce a ceramic rich in zirconolite crystals several hundred microns long containing a large fraction of the initial neodymium.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Begg, B.D. and Vance, E.R., “The incorporation of cerium in Zirconolite”, in Scientific Basis for Nuclear Waste Management XX, McGray, P. Ed., Mat. Res. Soc. Symp. Proc. (1997).Google Scholar
2 Vance, E.R., Begg, B.D., Day, R.A. and Ball, C.J., “Zirconolite-Rich Ceramics for Actinide Wastes”, Scientific Basis for Nuclear Waste Management XVIII, Murakami, T. and Ewing, R.C. eds., Mat. Res. Soc. Symp. Proc., vol. 353 (1995)Google Scholar
3 Clinard, F.W., “Review of Self-Irradiated Effects in Pu-Substituted Zirconolite”, Am. Ceram. Bull. 65, 1181–87 (1986)Google Scholar
4 Ewing, R. C., Haaker, R. F., “Zirconolites from Sri Lanka, South Africa and Brazil“, Scientific Basis for Nuclear Waste Management, Topp, S. V. Ed., vol.4, Elsevier, North Holland, New York (1982)Google Scholar
5 Lumpkin, G. R., Ewing, R. C., Chakoumakos, B. C.; Greegor, R. B., Lyte, F. W., Foltyn, E. M., Clinard, F. W., Boatner, L. A., Abraham, M. M., “alpha-recoil damage in zirconolite (CaZrTi207)”, J. Mater. Res.,1, (4), (1986).Google Scholar
6 Ringwood, A.E. et al., in Radioactive Waste Forms for the Future, Lutze, W. and Ewing, R.C. (eds), North-Holland (1988).Google Scholar
7 McGlinn, P., Hart, K.P., Loi, E.H. and Vance, E.R., “pH Dependence of the Aqueous Dissolution Rates of Perovskite and Zirconolite at 90°C”, Scientific Basis for Nuclear Waste Management XVIII, Murakami, T. and Ewing, R.C. eds., Mat. Res. Soc. Symp. Proc., vol. 353 (1995)Google Scholar
8 Lumpkin, G. R., Smith, K. L., Blackford, M. G., “Development of secondary phases on synroc leached at 150°C”, Scientific Basis for Nuclear Waste Management XVIII, Murakami, T. and Ewing, R.C. eds., vol. 353 (1995)Google Scholar
9 Reimann, G. A, Kong, P. C., INEL report EGG-MS-10642, p. 30 (1993)Google Scholar
10 Vance, E. R., Jostsons, A., Day, R A., Ball, C. J., Begg, B. D. and Angel, P.J.Excess Pu disposition i Zirconolite-rich Synroc”, Scientific Basis for Nuclear Waste Management XIX, Murphy, W. M. and Knecht, D. A. eds., vol. 412 (1996)Google Scholar
11 Ewing, R.C., Weber, W.J. and Lutze, W., “Waste Forms for the Disposal of Weapons Plutonium”, in Disposal of Weapon Plutonium, Merz, E.R. and Walter, C.E. eds., (1996)Google Scholar
12 Ewing, R. C., Weber, W. J., Clinard, F. W.Radiation effects in nuclear waste forms for highlevel radioactive waste”, Progress in nuclear energy, vol.29, no 2, pp.63127, (1995)Google Scholar
13 Fillet, C., Marillet, J., Dussossoy, J.L. and Phalippou, J.. “Sphene and Zirconolite Glass Ceramics for Long-Lived Actinide Immobilization”, Am. Ceram. Society Fall Meeting 1997, Cincinnati, (1997), to be published in Ceramic Transaction.Google Scholar
14 Jouan, A., Moncouyoux, J.P. and Merlin, S.. Proceedings of Waste Management 95, Tucson (1995).Google Scholar
15 Advocat, T., Leturcq, G., Berger, G., Lacombe, J. and Vernaz, E.. “Alteration of Cold Crucible Melted Titanate-Based Ceramics: Comparison with Hot-Pressed Titanate-Based Ceramic”, Scientific Basis for Nuclear Waste Management XX, McGray, P. Ed., Mat. Res. Soc. Symp. Proc. (1997).Google Scholar
16 Gregor, R.B., Lytle, F.W., Livak, R.J. and Clinard, J.W., “X-Ray Spectroscopic Investigation of Pu-Substituted Zirconolite”, Journal of Nuclear Materials 152, 270277. (1988).Google Scholar