Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:50:10.056Z Has data issue: false hasContentIssue false

Nb-substituted TiO2 Nanosheet Exfoliated from Layered Titanate for photocatalysis

Published online by Cambridge University Press:  17 May 2011

Haiyan Song*
Affiliation:
Department of Chemistry/SMN, University of Oslo, N-0315 Oslo, Norway
Anja O. Sjåstad
Affiliation:
Department of Chemistry/SMN, University of Oslo, N-0315 Oslo, Norway
Poul Norby
Affiliation:
Department of Chemistry/SMN, University of Oslo, N-0315 Oslo, Norway
Helmer Fjellvåg
Affiliation:
Department of Chemistry/SMN, University of Oslo, N-0315 Oslo, Norway
*
*Corresponding author: Tel.: +47 22855584; E-mail: [email protected]
Get access

Abstract

Photoelectrochemical behavior and Photocatalytic decomposition of Methylene Blue were studied on (Nb,Ti)O2 nanosheets electrode and (Nb,Ti)O2 particles produced from nanosheets, respectively. A detailed characterization of the materials show that Nb-substitution suppresses the transition from anatase to rutile. Depending on the oxygen partial pressure during the transformation, the Nb-substitution into TiO2 provokes different defect situations and also electronic properties. 1% Nb-substitution can drasticly increase the photocurrent and photocatalytic activity of Ti0.9O2 due to the formation of new defects and electron traps that can promote the separation of photoinduced holes and electrons. However, high concentration of electron traps produced by heavy Nb-doping can serve as efficient recombination centers that caused loss of photocatalytic activity of the samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujishima, A. and Honda, K., Nature 238, 37 (1972).Google Scholar
2. Carp, O., Huisman, C. L., and Reller, A., Prog. Solid State Chem. 32, 33 (2004).Google Scholar
3. Fujimoto, M., Koyama, H., Konagai, M., Hosoi, Y., Ishihara, K., Ohnishi, S., and Awaya, N., Appl. Phys. Lett. 89, 223509 (2006).Google Scholar
4. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H., Science 291, 854 (2001).Google Scholar
5. Furubayashi, Y., Hitosugi, H., Yamamoto, Y., Inaba, K., Kinoda, G., Hirose, Y., Shimada, T., and Hasegawa, T., Appl. Phys. Lett. 86, 252101 (2005).Google Scholar
6. Hitosugi, T., Furubayashi, Y., Ueda, A., Itabashi, K., Inaba, K., Hirose, Y., Kinoda, G., Yamamoto, Y., Shimada, T., and Hasegawa, T., Jpn. J. Appl. Phys. 44, L1063 (2005).Google Scholar
7. Kurita, D., Ohta, S., Sugiura, K., Ohta, H., and Koumoto, K., J. Appl. Phys. 100, 096105 (2006).Google Scholar
8. Zhang, S. X., Dhar, S., Yu, W., Xu, H., Ogale, S. B., and Venkatesan, T., Appl. Phys. Lett. 91, 112113 (2007).Google Scholar
9. Gillispie, M. A., van Hest, M. F. A. M., Dabney, M. S., Perkins, J. D., and Ginley, D. S., J. Appl. Phys. 101, 033125 (2007).Google Scholar
10. Osorio-Guillen, J., Lany, S., and Zunger, A., Phys. Rev. Lett. 100, 036601 (2008).Google Scholar
11. Mattsson, A., Leideborg, M., Larsson, K., Westin, G. and Osterlund, L., J. Phys. Chem. B 110, 1210 (2006).Google Scholar
12. Song, H. Y., Sjåstad, A. O., Vistad, Ø. B., Gao, T. and Norby, P., Inorg. Chem. 48, 6952 (2009).Google Scholar
13. Song, H. Y., Sjåstad, A. O., Vistad, Ø. B., Norby, P. and Fjellvåg, H., Inorg. Chem.submitted, (2011).Google Scholar
14. Miyagi, T., Kamei, M., Sakaguchi, I., Mitsuhashi, T., Yamazaki, A., Jpn. J. Appl. Phys. 43, 775 (2004).Google Scholar