Article contents
The Nature of Point Defects and their Influence on Diffusion Processes in Silicon at High Temperatures
Published online by Cambridge University Press: 15 February 2011
Abstract
The paper highlights recent progress in understanding the role of vacancies and self-interstitials in self- and impurity diffusion in silicon above about 700°C. How surface oxidation of silicon leads to a perturbation of the pointdefect population is described. An analysis of the resulting oxidationenhanced or -retarded diffusion of group III and group V dopants shows that under thermal equilibrium as well as under oxidation conditions both vacancies and self-interstitials are present. For sufficiently long times vacancies and self-interstitials attain dynamical equilibrium which involves their recombination and spontaneous thermal creation in the bulk of silicon crystals. The existence and the nature of a recombination barrier slowing down the recombination process are discussed in this context. Recent experimental and theoretical results on the diffusion of gold in silicon enable us to determine the selfinterstitial component of silicon self-diffusion and to obtain an estimate of the respective vacancy contribution. The two components turn out to be of the same order of magnitude from 700°C up to the melting point.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1982
References
REFERENCES
- 11
- Cited by