Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T07:27:10.118Z Has data issue: false hasContentIssue false

Native Point Defect Densities and Dark Line Defects in ZnSe

Published online by Cambridge University Press:  10 February 2011

M. A. Berding
Affiliation:
SRI International, Menlo Park, California 94025, [email protected]
A. Sher
Affiliation:
SRI International, Menlo Park, California 94025, [email protected]
M. Van Schilfgaarde
Affiliation:
SRI International, Menlo Park, California 94025, [email protected]
Get access

Abstract

Native point defect densities (including vacancies, antisites and interstitials) in ZnSe are calculated using a quasichemical formalism, including both vibrational and electronic contributions to the defect free energy. The electronic contribution to the defect formation free energy is calculated using the self-consistent first-principles full-potential linearized muffin-tin orbital (FP-LMTO) method and the local-density approximation (LDA). Gradient corrections are included so that absolute reference to zinc atoms in the vapor phase can be made. We find that the Frenkel defect formation energy is ∼0.3 eV lower at a stacking fault than in the bulk lattice. Nonradiative-recombination-induced Frenkel defect generation at stacking faults is proposed as a mechanism responsible for the limited device lifetimes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Guha, S., DePuydt, J. M., Haase, M. A., Qiu, J., Cheng, H., Appl. Phys. Lett. 63, 3107 (1993).Google Scholar
2 Guha, S., Cheng, H., Haase, M. A., DePuydt, J. M., Qiu, J., Wu, B. J., Hofler, G. E. Appl. Phys. Lett. 65, 801 (1994).Google Scholar
3 Hua, G.C., Otsuka, N., Grillo, D. C., Fan, Y., Han, J., Ringle, M. D., Gunshor, R. L., Hovinen, M., Nurmikko, A. V., Appl. Phys. Lett. 65, 1331 (1994).Google Scholar
4 van Schilfgaarde, M., Berding, M. A., A.T. Paxton (submitted to Phys. Rev. B).Google Scholar
5 Keating, P. N., Phys. Rev. 145, 637 (1966).Google Scholar
6 Maradudin, A. A., Montroll, E. W., Weiss, G. H., Ipatova, I. P., in Solid State Physics Supp. 3, edited by Ehrenreich, H., Seitz, F., Turnbull, D., Academic Press, New York 1971, p. 1.Google Scholar
7 Berding, M. A., Schilfgaarde, M. van, Sher, A., Phys. Rev. B 50, 1519 (1994).Google Scholar
8 Walle, C. G. Van de, Laks, D. B., Neumark, G.F., Pantelides, S. T., Phys. Rev. B 47, 9425 (1993).Google Scholar