Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:46:34.228Z Has data issue: false hasContentIssue false

Narrow Resonance Profiling Study of the Oxidation of Ti1-xALxN Barrier Layer

Published online by Cambridge University Press:  10 February 2011

M. C. Hugon
Affiliation:
Laboratoire Charles Fabry, Groupe Physique des Films Minces, Université Paris Sud, 91403 ORSAY, France
J. M. Desvignes
Affiliation:
Laboratoire Charles Fabry, Groupe Physique des Films Minces, Université Paris Sud, 91403 ORSAY, France
F. Letendu
Affiliation:
Laboratoire Charles Fabry, Groupe Physique des Films Minces, Université Paris Sud, 91403 ORSAY, France
B. Agius
Affiliation:
Laboratoire Charles Fabry, Groupe Physique des Films Minces, Université Paris Sud, 91403 ORSAY, France
I Vickridge
Affiliation:
GPS, Tour 23, Université Paris 6 et 7, 75251 Paris, France
D. J. Kim
Affiliation:
Dept. of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
F. Ayguavives
Affiliation:
Dept. of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
A. I. Kingon
Affiliation:
Dept. of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
Get access

Abstract

The preparation of ferroelectric and high dielectric perovskite materials, which is performed at high temperature (550–750°C) in oxidizing environments, provides strong limitations on the choice of electrode materials which have to be used for integration with semiconductor devices. To minimize interdiffusion and oxidation reactions, a diffusion barrier must be placed between Si substrate and electrode material (Pt, lrO2, RuO2.…). Ti1-xAlxN thin films, deposited by reactive sputtering, are promising materials as electrically conductive layers and robust diffusion barriers. The stability of these films has been investigated at conditions typically used for crystallization of perovskite dielectrics. Films with various Al composition (x=0, 0.1, 0.2 and 0.4) have therefore been annealed by RTA (rapid thermal annealing) in 18O2 at 550–750°C. The concentration depth profiles of both 18O and 27A1 were measured before and after the RTA treatments via the narrow resonances of 18O(p,α)15N at 151 keV (fwhm=100 eV) and 27Al(p,γ)28Si at 992 keV (fwhm=100 eV). Al incorporation in the films reduces oxide growth especially at high annealing temperatures. The Al excitation curves indicate a uniform Al content for as deposited Ti1−xAlxN, and reveal Al diffusion to the surface during oxidation which indicates the formation of an Al rich oxide layer at the Ti1-xAlxN surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Khamankar, R. B., Kressley, M. A., Visokay, M. R., Moise, T., Nemento, S., Okuno, Y., Fang, S. J., Wilson, A. M., Gaynor, J. F., Crenshaw, D. L., et al. IEDM, 245 (1997).Google Scholar
(2) Fujii, E., Otsuki, T., Judai, Y., Shimada, Y., Azuma, M., Uemoto, Y., Nagano, Y., Nasu, T., Izutsu, Y., Maysuda, A., IEDM, 597 (1997).Google Scholar
(3) McIntyre, D., Greene, J. E., Hakansson, G., Sundgren, J. E., and Munz, W. D., J. Appl. Phys. 67, 1542 (1990).Google Scholar
(4) Kim, C. W. and Kim, K. H., Thin Solid Films, 307, 113 (1997).Google Scholar
(5) Hara, T., Tanaka, M., Sakiyama, K., Onishi, S., Ishahara, K. and Kudo, J., Jpn. J. Appl. Phys. 36, L893 (1997).Google Scholar
(6) Grill, A., Kane, W., Viggiano, J., Brady, M., and Laibowitz, R., J. Mater. Res. 7, 3260 (1992).Google Scholar
(7) Vickridge, I. and Amsel, G., Nuclear Instruments and Methods in Physics Research B45, 6 (1996).Google Scholar
(8) Ishizuka, Y., Kim, D. J., Streiffer, S. K., and Kingon, A., MRS Ferroelectric Thin Films VII, 191 (1999).Google Scholar