Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:08:26.138Z Has data issue: false hasContentIssue false

Nanotube-based systems for broadband optical limiting: towards an operational system

Published online by Cambridge University Press:  01 February 2011

N. Izard
Affiliation:
Centre Technique d'Arcueil, DGA, Arcueil, France Groupe de Dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier 2, Montpellier, France
D. Riehl
Affiliation:
Centre Technique d'Arcueil, DGA, Arcueil, France
E. Anglaret
Affiliation:
Groupe de Dynamique des Phases Condensées, UMR CNRS 5581, Université Montpellier 2, Montpellier, France
Get access

Abstract

Nanotube-based systems are good candidates for optical limiting against broadband laser pulses. We explore new routes to improve their limiting performances. We show that the diameter of the nanotubes is a key factor to control the performances. On the other hand, we demonstrate that chemically modified nanotubes can be mixed with organic chromophores, leading to high performance composite limiting systems which are particularly efficient in the nanosecond regime due to the cumulative effects of nonlinear scattering and multiphoton absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Vivien, L., Lançon, P., Riehl, D., Hache, F., Anglaret, E., Carbon 40, 1789 (2002).Google Scholar
[2] O'Connell, M.J., Bachilo, S.M., Huffman, C.B., Moore, V.C., Strano, M.S., Haroz, E.H., Rialon, K.L., Boul, P.J., Noon, W.H., Kittrell, C., Ma, J., Hauge, R.H., Weisman, R.B., Smalley, R.E., Science 297, 593 (2002).Google Scholar
[3] Izard, N., Riehl, D., Anglaret, E., Phys. Rev. B 71, 004519 (2005).Google Scholar
[4] Badaire, S., Poulin, P., Maugey, M. and Zakri, C., Langmuir, in press.Google Scholar
[5] Izard, N., Riehl, D., Anglaret, E., AIP Conference Proceedings 685, 235 (2003).Google Scholar
[6] Jin, Z., Huang, L., Goh, S.H., Xu, G., Ji, W., Chem. Phys. Lett. 352, 328 (2002).Google Scholar
[7] Li, C., Liu, C., Li, F., and Gong, Q., Chem. Phys. Lett. 380, 201 (2003).Google Scholar
[8] Hongbing, Z., Wenzhe, C., Minquan, W., Zhengchan, Z., Chunlin, Z., Chem. Phys. Lett. 382, 313 (2003).Google Scholar
[9] Xu, J., Xiao, M., Czerw, R., Carroll, D. L., Chem. Phys. Lett. 389, 247 (2004).Google Scholar
[10] Izard, N., Billaud, P., Riehl, D., Anglaret, E., Opt. Lett. 30, 043512 (2005).Google Scholar
[11] Vivien, L., Riehl, D., Anglaret, E. and Hache, F., IEEE J. of Quant. Elec. 36, 680 (2000).Google Scholar
[12] Vivien, L., Riehl, D., Delouis, J.F., Delaire, J.A., Hache, F., Anglaret, E., J. Opt. Soc. Am. B 19, 208 (2002).Google Scholar
[13] Miles, P.A., Appl. Opt. 33 (1994) 6965.Google Scholar
[14] Van Stryland, E.W., Yang, S.S., Hernandez, F.E., Dubikovsky, V., Shensky, W., Hagan, D.J., Nonlinear Opt. 27 (2001) 181.Google Scholar
[15] Izard, N., Ménard, C., Riehl, D., Doris, E., Mioskowski, C., Anglaret, E., Chem. Phys. Lett. 391, 124 (2004).Google Scholar
[16] Riehl, D., Izard, N., Vivien, L., Anglaret, E., Doris, E., Menard, C., Mioskowski, C., Porrès, L., Mongin, O., Charlot, M., Blanchard-Desce, M., Anémian, R., Mulatier, J.C., Barsu, C., Andraud, C., Proceedings SPIE 5211, Nonlinear Optical Transmission and Multiphoton Processes in Organics (2003), 124134.Google Scholar
[17] Chen, J. et al, Science 282, 95 (1998).Google Scholar
[18] Ramesh, S., Ericson, L.M., Davis, V.A., Saini, R.K., Kittrell, C., Pasquali, M., Billups, W.E., Adams, W.W., Hauge, R.H., Smalley, R.E., J. Phys. Chem. B 108, 8794 (2004).Google Scholar
[19] Pénicaud, A., Poulin, P., Derré, A., Anglaret, E., Petit, P., J. Am. Chem. Soc. 127, 8 (2005).Google Scholar