Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T15:21:30.281Z Has data issue: false hasContentIssue false

Nano-TiO2 for Dye-Sensitized Solar Cells: Optimization, Production and Market

Published online by Cambridge University Press:  20 July 2011

Marie-Isabelle Baraton*
Affiliation:
Centre Européen de la Céramique, SPCTS-UMR CNRS 6638, Limoges (France)
Get access

Abstract

Since the beginning of the 20th century, titanium dioxide (titania, TiO2) has essentially been commercialized as white powder pigment. But, titania, as one of the most efficient photocatalysts, is also used in many other applications, such as photodegradation of pollutants and photocatalytic water splitting. Moreover, titania is a semiconductor and is used as gas sensing material. Nanosized titania particles (nano-TiO2) are preferred over conventional particles in applications where greater surface area, higher reactivity, and quantum confinement effects matter. For example, in the field of clean energy, acceptable energy conversion efficiencies for dye-sensitized solar cells (DSSCs) can only be achieved with nanostructured semiconductors, and particularly with nanostructured titania. Research on DSSCs based on nano-TiO2 has been extensively pursued, and the number of papers and patents published in this area has grown exponentially over the last ten years. However, at present, commercial devices are produced in limited quantities and small sizes, and address niche markets. Research efforts have largely focused on the optimization of the dye, but recently the TiO2 electrode itself has attracted more attention. It has been shown that particle size and shape, crystallinity, surface morphology and chemistry of the TiO2 material are key parameters to be controlled for optimized performance of the solar cell. After an overview of the state-of-the-art on nano-TiO2 for application in DSSCs and the commercial potential of these devices, our approach to the control of the nano-TiO2 surface chemistry for improvement of the DSSC performance is briefly introduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Reck, E. and Richards, M., Surface Coatings International Part B: Coatings Transactions 80, 568 (1977).10.1007/BF02693848Google Scholar
3 Ertl, G., Knözinger, H., Schüth, F., and Weitkamp, J. (Eds.), Handbook of Heterogeneous Catalysis, Vol. 4 (Wiley-VCH Verlag GmbH& Co. KGaA, 2008).10.1002/9783527610044Google Scholar
4 Linsebigler, A.L., Lu, G., and Yates, J.T. Jr., Chemical Review 95, 735 (1995).10.1021/cr00035a013Google Scholar
5 Wold, A., Chemistry of Materials 5, 280 (1993).10.1021/cm00027a008Google Scholar
6 Fujishima, A. and Honda, K., Nature 238, 37 (1972).10.1038/238037a0Google Scholar
7 Sirghi, L. and Hatanaka, Y., Surface Science 530, L323 (2003).10.1016/S0039-6028(03)00397-2Google Scholar
10 Tian, G.-L., He, H.-B., and Shao, J.-D., Chinese Physics Letters 22, 1787 (2005).10.1088/0256-307X/22/11/005Google Scholar
11 Wunderlich, W., Miao, L., Tanemura, M., Tanemura, S., Jin, P., Kaneko, K., Terai, A., Nabatova-Gabin, N., and Belkada, R., International Journal of Nanoscience 3, 439 (2004).10.1142/S0219581X04002231Google Scholar
12 Pavasupree, S., Jitputti, J., Ngamsinlapasathian, S., and Yoshikawa, S., Materials Research Bulletin 43, 149 (2008).10.1016/j.materresbull.2007.02.028Google Scholar
13 Chen, X. and Mao, S.S., Chemical Review 107, 2891 (2007).10.1021/cr0500535Google Scholar
14 Nanoposts Report: Commercial applications for photocatalytic nanoparticle titania, published Feb. 2010, http://www.nanoposts.com/ Google Scholar
15 DuPont Report: Titanium dioxide: A brief overview of TiO2 pigments compared with TiO2 nanomaterials, Mars 2010 http://www.dtsc.ca.gov/TechnologyDevelopment/Nanotechnology/upload/Whiting-_TiO2_Uses.pdf 10.1016/S0969-6210(10)70186-7Google Scholar
17 Tributsch, H., Photochemistry and Photobiology 16, 261 (1972).10.1111/j.1751-1097.1972.tb06297.xGoogle Scholar
18 O’Regan, B. and Grätzel, M., Nature 353, 737 (1991).10.1038/353737a0Google Scholar
19 Grünwald, R. and Tributsch, H., Journal of Physical Chemistry B 101, 2564 (1997).10.1021/jp9624919Google Scholar
20 Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N. and Han, L., Japanese Journal of Applied Physics 45, L638 (2006).10.1143/JJAP.45.L638Google Scholar
21 Nattestad, A., Mozer, A.J., Fischer, M.K.R., Cheng, Y.-B., Mishra, A., Bäuerle, P., and Bach, U., Nature Materials 9, 31 (2010).10.1038/nmat2588Google Scholar
22 Grätzel, M., Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4, 145 (2003).10.1016/S1389-5567(03)00026-1Google Scholar
23 Lagref, J.-J., Nazeeruddin, M.K., Grätzel, M., Inorganica Chimica Acta 361, 735 (2008).10.1016/j.ica.2007.05.061Google Scholar
24 Bauer, C., Boschloo, G., Mukhtar, E., and Hagfeldt, A., Journal of Physical Chemistry B 105, 5585 (2001).10.1021/jp004121xGoogle Scholar
25 Brabec, C.J., Solar Energy Materials & Solar Cells 83, 273 (2004).10.1016/j.solmat.2004.02.030Google Scholar
26 Dennler, G., Scharber, M.C., and Brabec, C.J., Advanced Materials 21, 1323 (2009).10.1002/adma.200801283Google Scholar
27 Green, M.A., Emery, K., Hishikawa, Y., and Warta, W., Progress in Photovoltaics: Research and Applications 18, 346 (2010).10.1002/pip.1021Google Scholar
28 Gaudiana, R., Journal of Physical Chemistry Letters 1, 1288 (2010).10.1021/jz100290qGoogle Scholar
30 Kohle, O., Grätzel, M., Meyer, A.F., and Meyer, T.B., Advanced Materials 9, 904 (1997).10.1002/adma.19970091111Google Scholar
31 Figgemeier, E. and Hagfeldt, A., International Journal of Photoenergy 6, 127 (2004).10.1155/S1110662X04000169Google Scholar
32 Macht, B., Turrión, M., Barkschat, A., Salvador, P., Ellmer, K., Tributsch, H., Solar Energy Materials & Solar Cells 73, 163 (2002).10.1016/S0927-0248(01)00121-0Google Scholar
33 Barkschat, A., Moehl, T., Macht, B., and Tributsch, H., International Journal of Photoenergy, Article ID 814951 (2008).Google Scholar
34 Tsoukleris, D.S., Arabatzis, I.M., Chatzivasiloglou, E., Kontos, A.I., Belessi, V., Bernard, M.C., and Falaras, P., Solar Energy 79, 422 (2005).10.1016/j.solener.2005.02.017Google Scholar
35 Baraton, M.-I., in Handbook of Nanostructured Materials and Nanotechnology, edited by Nalwa, H.S. (Academic Press, 1999) pp. 89153.Google Scholar
36 Nazeeruddin, M.K., Humphry-Baker, R., Liska, P., and Grätzel, M., Journal of Physical Chemistry B 107, 8981 (2003).10.1021/jp022656fGoogle Scholar
37 Greijer Agrell, H., Lindgren, J., Hagfeldt, A., Solar Energy 75, 169 (2003).10.1016/S0038-092X(03)00248-2Google Scholar
38 Wang, Q., Chen, C., Zhao, D., Ma, W., and Zhao, J., Langmuir 24, 7338 (2008).10.1021/la800313sGoogle Scholar
39 Finnie, K.S., Bartlett, J.R., and Woolfrey, J.L., Langmuir 14, 2744 (1998).10.1021/la971060uGoogle Scholar
40 Murakoshi, K., Kano, G., Wada, Y., Yanagida, S., Miyazaki, H., Matsumoto, M., and Murasawa, S., Journal of Electroanalytical Chemistry 396, 27 (1995).10.1016/0022-0728(95)04185-QGoogle Scholar
41 Rotzinger, F.P., Kesselman-Truttmann, J.M., Hug, S.J., Shklover, V., and Grätzel, M., Journal of Physical Chemistry B 108, 5004 (2004).10.1021/jp0360974Google Scholar
42 Wu, W.-C., Chuang, C.-C., and Lin, J.-L., Journal of Physical Chemistry B 104, 8719 (2000).10.1021/jp0017184Google Scholar
43 Brownson, J.R.S., Tejedor-Tejedor, M.I., and Anderson, M.A., Journal of Physical Chemistry B 110, 12494 (2006).10.1021/jp0614547Google Scholar
44 Pérez León, C., Kador, L., Peng, B., and Thelakkat, M., Journal of Physical Chemistry B 110, 8723 (2006).10.1021/jp0561827Google Scholar
45 Baraton, M.-I., in Encyclopedia of Nanoscience and Nanotechnology, edited by Nalwa, H.S. (American Scientific Publishers, 2004) Vol. 10, pp. 267281.Google Scholar
46 Baraton, M.-I., in Nanocrystalline Metals and Oxides: Selected Properties and Applications, edited by Knauth, P. and Schoonman, J. (Kluwer Academic Publishers, 2002) pp. 165187.Google Scholar
47 Gong, X.-Q., Selloni, A., and Vittadini, A., Journal of Physical Chemistry B 110, 2804 (2006).10.1021/jp056572tGoogle Scholar
48 Kim, K.S. and Barteau, M.A., Langmuir 6, 1485 (1990).10.1021/la00099a009Google Scholar
49 Xu, C. and Koel, B.E., Journal of Physical Chemistry 102, 8158 (1995).10.1063/1.469227Google Scholar
50 Busca, G. and Lorenzelli, V., Materials Chemistry 7, 89 (1982).10.1016/0390-6035(82)90059-1Google Scholar
51 Pei, Z.-F. and Ponec, V., Applied Surface Science 103, 171 (1996).10.1016/0169-4332(96)00453-9Google Scholar
52 Brownson, J.R.S., Tejedor-Tejedor, M.I., and Anderson, M.A., Chemistry of Materials 17, 6304 (2005).10.1021/cm051568fGoogle Scholar
53 Deacon, G.B., Huber, F., and Phillips, R.J., Inorganica Chimica Acta 104, 41 (1985).10.1016/S0020-1693(00)83783-4Google Scholar
54 Deacon, G.B. and Phillips, R.J., Coordination Chemistry Reviews 33, 227 (1980).10.1016/S0010-8545(00)80455-5Google Scholar
55 Chambers, S.A., Thevuthasan, S., Kim, Y.J., Herman, G.S., Wang, Z., Tober, E., Ynzunza, R., Morais, J., Peden, C.H.F., Ferris, K., Fadley, C.S., Chemical Physics Letters 267, 51 (1997).10.1016/S0009-2614(97)00070-5Google Scholar
56 Vittadini, A., Selloni, A., Rotzinger, F.P., and Grätzel, M., Journal of Physical Chemistry B 104, 1300 (2000).10.1021/jp993583bGoogle Scholar
57 Wang, C.-y., Groenzin, H., and Shultz, M.J., Journal of the American Chemical Society 127, 9736 (2005).10.1021/ja051996mGoogle Scholar