No CrossRef data available.
Published online by Cambridge University Press: 20 July 2011
This paper describes the development of nanomonitors, which are electrical immunoassays for detection of multiple protein biomarkers. These devices are hybrid sensors with micro-fabricated electrode arrays on a silicon substrate, and integrated nanoporous alumina membranes to provide protein confinement and signal amplification. The disease biomarkers C-reactive protein and Myeloperoxidase have been detected by the nanomonitors in ultra-low concentrations. Proteins were detected in pure samples, human serum, and patient blood samples. The detection accuracy and sensitivity of the nanomonitors in patient samples was comparable to the Enzyme Linked Immunosorbent Assay (ELISA) method of protein detection. Nanomonitors provide the additional benefits of being rapid, label-free, sensitive, and cost effective, providing improvements over traditional protein detection methods, and having potential applications in disease diagnosis.