Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:15:06.993Z Has data issue: false hasContentIssue false

Nanostructuring of Multilayers by a Thermally Driven Self Assembling Process

Published online by Cambridge University Press:  21 March 2011

C. Herweg
Affiliation:
Institut fuer Materialphysik, Universitaet Goettingen, Windausweg 2, D-37073 Goettingen
S. Dreyer
Affiliation:
Institut fuer Materialphysik, Universitaet Goettingen, Windausweg 2, D-37073 Goettingen
P. Troche
Affiliation:
Institut fuer Materialphysik, Universitaet Goettingen, Windausweg 2, D-37073 Goettingen
J. Hoffmann
Affiliation:
Zentrum fuer Funktionswerkstoffe ZFW gGmbH, Windausweg 2, D-37073 Goettingen
S. Sievers
Affiliation:
Institut fuer Materialphysik, Universitaet Goettingen, Windausweg 2, D-37073 Goettingen
C. Lang
Affiliation:
Institut fuer Materialphysik, Universitaet Goettingen, Windausweg 2, D-37073 Goettingen
H. C. Freyhardt
Affiliation:
Zentrum fuer Funktionswerkstoffe ZFW gGmbH, Windausweg 2, D-37073 Goettingen
Get access

Abstract

Multilayers consisting of two immiscible components (e.g. Fe/Ag Fe/Au or Ni/NiO) could by transformed by an annealing process into a nanostructured system of non statistically distributed nearly spherical particles in a surrounding matrix of the complementary component. The non statistical arrangement of the particles and the dynamics of the disintegration process strongly depend on the initial interface energy, i.e. the local interface curvature and the local interfacial stress. Detailed microstructure investigations of the different systems are used to interpret the measured transport properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schultz, L., Bormann, R., J. Appl. Phys., 50 (1979) 418.Google Scholar
[2] Suchtelen, J. van, Journal of Crystal Growth 43 (1977) 2846.Google Scholar
[3] Josell, D., Spaepen, F., MRS Bulletin (1999) 3943.Google Scholar
[4] Troche, P., Thermisch induzierte Gestaltinstabilitaet von Vielfachschichten, Dissertation, Goettingen, 2000.Google Scholar
[5] Locquel, J.-P., Phys. Rev. B 39 (1989) 13338.Google Scholar
[6] Ewert, J. C., Hartung, F., Schmitz, G., Appl. Phys. Letters. 71, 10 (1997) 1311.Google Scholar
[7] Barnás, J., Fuss, A., Camley, R. E., Gruenberg, P. and Zinn, W., Phys. Rev. B, 42 (1990), 8110.Google Scholar
[8] Honda, S., et al. J. Appl. Phys. 80, 9 (1996), 175.Google Scholar
[9] Borchers, C., Troche, P., Herweg, C., Hoffmann, J. J. Mat. Sci., 37 (2002) 731736.Google Scholar
[10] Herweg, C., GMR als Sonde zur Untersuchung thermisch induzierter Gestalinstabilitaeten magnetischer Vielfachschichten, diploma thesis (1999).Google Scholar
[11] Samwer, K., Winzer, K., Z. f. Phys. B, 25 (1976).Google Scholar
[12] Baberschke, K., Appl. Phys. A 62 (1996), p. 417427.Google Scholar