Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T16:10:35.320Z Has data issue: false hasContentIssue false

Nanostructures in Uranium Oxocompounds

Published online by Cambridge University Press:  26 February 2011

Sergey V. Krivovichev
Affiliation:
[email protected], St.Petersburg State University, Crystallography, University Emb. 7/9, St.Petersburg, N/A, 199034, Russian Federation, 7(812)3289647, 7(812)3284418
Ivan G. Tananaev
Affiliation:
[email protected], Instute of Physical Chemistry RAS, Russian Federation
Boris F Myasoedov
Affiliation:
[email protected], Institute of Physical Chemistry RAS, Russian Federation
Get access

Abstract

Examples of uranium-oxide-based nanostructures are considered, including 2D organic-inorganic nanocomposites and nanotubules. In nanocomposites, interfacial interactions between organic and inorganic substructures can be studied by charge-density matching principle. Application of this principle to uranyl compounds requires special attention since surface area of uranyl-based 2D units is higher than that of other inorganic oxysalts units (i.e. metal phosphates). The charge-density matching principle is, however, observed either through tail interdigitation (for long-chain monoamines) or incorporation of acid-water interlayers into organic substructure (for long-chain diamines). In some compounds, protonated amine molecules form cylindrical micelles that involves self-assembly governed by competing hydrophobic/hydrophillic interactions. The flexible inorganic complexes present in the reaction mixture could then form around cylindrical micelles to produce highly undulated 2D sheets or nanotubules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rao, C.N.R. and Cheetham, A.K., J. Mater. Chem. 11, 2887 (2001).Google Scholar
2. Rao, C.N.R. and Govindaraj, A., Nanotubes and Nanowires (RSC Publishing, Cambridge, 2005).Google Scholar
3. Burns, P. C., Kubatko, K.-A. Hughes, Sigmon, G., Fryer, B. J., Gagnon, J. E., Antonio, M. R., Soderholm, L., Angew. Chem. Int. Ed. 44, 2135 (2005).10.1002/anie.200462445Google Scholar
4. Krivovichev, S. V., Kahlenberg, V., Kaindl, R., Mersdorf, E., Tananaev, I. G. and Myasoedov, B. F., Angew. Chem. Int. Ed. 44, 1134 (2005).10.1002/anie.200462356Google Scholar
5. Krivovichev, S. V., Kahlenberg, V., Kaindl, R., Mersdorf, E., Tananaev, I. G. and Myasoedov, B. F., J. Amer. Chem. Soc. 127, 1072 (2005).10.1021/ja0436289Google Scholar
6. Albrecht-Schmitt, Th., Angew. Chem. Int. Ed. 44, 4836 (2005).10.1002/anie.200500936Google Scholar
7. Burns, P. C., Miller, M. L. and Ewing, R. C., Can. Mineral. 34, 845 (1996).Google Scholar
8. Burns, P. C., Ewing, R. C. and Hawthorne, F. C., Can. Mineral. 35, 1551 (1997).Google Scholar
9. Krivovichev, S. V. and Kahlenberg, V., Z. Naturforsch. 62b, 538 (2005).10.1515/znb-2005-0510Google Scholar
10. Krivovichev, S. V. and Kahlenberg, V., J. Alloys Compds 389, 55 (2005).10.1016/j.jallcom.2004.08.019Google Scholar
11. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 630, 2736 (2004).Google Scholar
12. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 631, 739 (2005).Google Scholar
13. Krivovichev, S. V. and Kahlenberg, V., Radiochemistry 47, 412 (2005).Google Scholar
14. Krivovichev, S. V. and Kahlenberg, V., Radiochemistry 47, 415 (2005).Google Scholar
15. Krivovichev, S. V. and Kahlenberg, V., J. Alloys Compds 395, 41 (2005).Google Scholar
16. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 631, 2352 (2005).10.1002/zaac.200400505Google Scholar
17. Krivovichev, S. V. and Kahlenberg, V., Z. Anorg. Allg. Chem. 631, 2358 (2005).Google Scholar
18. Krivovichev, S. V., Kahlenberg, V., Kaindl, R. and Mersdorf, E., Eur. J. Inorg. Chem. 2005, 16531656.Google Scholar
19. Krivovichev, S. V., Tananaev, I. G., Kahlenberg, V. and Myasoedov, B. F., Dokl. Phys. Chem. 403, 124 (2005).Google Scholar
20. Blatov, V. A., Serezhkina, L. B., Serezhkin, V. N. and Trunov, V. K., Koord. Khim. 14, 1705 (1988).Google Scholar
21. Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R. S., Stucky, G. D., Krishnamurty, M., Petroff, P., Firouz, A., Janicke, M. and Chmelka, B. F., Science 261, 1299 (1993).10.1126/science.261.5126.1299Google Scholar
22. Maggard, P. A. and Boyle, P. D., Inorg. Chem. 42, 4250 (2003).10.1021/ic0342649Google Scholar
23. Haskouri, J.E., Roca, M., Cabrera, S., Alamo, J., Beltrán-Porter, A., Beltrán-Porter, D., Marcos, M. Dolores, and Amorós, P., Chem. Mater. 11, 1446 (1999).Google Scholar
24. Feng, P., Bu, X., and Stucky, G. D., Inorg. Chem. 39, 2 (2000).10.1021/ic991026yGoogle Scholar
25. Tolbert, S. H., Landry, C. C., Stucky, G. D., Chmelka, B. F., Norby, P., Hanson, J. C. and Monnier, A., Chem. Mater. 13, 2247 (2001).Google Scholar
26. Sassoye, C., Loiseau, T., and Férey, G., J. Fluor. Chem. 107, 187 (2001).10.1016/S0022-1139(00)00357-2Google Scholar
27. Krivovichev, S. V. and Burns, P. C., J. Solid State Chem. 170, 106 (2003).10.1016/S0022-4596(02)00033-6Google Scholar
28. Krivovichev, S. V., Crystallogr. Rev. 10, 185 (2004).Google Scholar
29. Iijima, S., Nature 354, 56 (1991).Google Scholar
30. Patzke, G. R., Krumeich, F., and Nesper, R., R. Angew. Chem. Int. Ed. 41, 2446 (2002).10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K3.0.CO;2-K>Google Scholar
31. Krush-Elbaum, L., Newns, D. M., Zeng, H., Derycke, V., Sun, J. Z., and Sandstrom, R., Nature 431, 672 (2004).Google Scholar
32. Krivovichev, S. V., Yakovenchuk, V. N., Armbruster, T., Döbelin, N., Pattison, P., Weber, H.-P. and Depmeier, W., Amer. Mineral. 89, 1561 (2004).Google Scholar
33. Krivovichev, S. V. and Burns, P. C., Radiochem. 46, 408 (2004).Google Scholar
34. Krivovichev, S. V. and Burns, P. C., Z. Kristallogr. 218, 683 (2003).Google Scholar
35. Krivovichev, S. V. and Burns, P. C., Z. Kristallogr. 218, 725 (2003).Google Scholar