Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T15:22:48.632Z Has data issue: false hasContentIssue false

Nanostructured Zinc Oxide Piezoelectric Energy Generators Based on Semiconductor P-N Junctions

Published online by Cambridge University Press:  11 July 2012

Joe Briscoe
Affiliation:
Centre for Materials Research, School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, UK.
Mark Stewart
Affiliation:
National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
Melvin Vopson
Affiliation:
National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
Markys Cain
Affiliation:
National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
Paul M. Weaver
Affiliation:
National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
Steve Dunn*
Affiliation:
Centre for Materials Research, School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, UK.
Get access

Abstract

ZnO nanorods grown on plastic substrates by chemical methods are combined with both inorganic and organic p-type materials to make flexible p-n junction devices. When bent the devices generate both voltage and current peaks, which is attributed to the piezoelectric effect in the ZnO nanorods. The best device produces a maximum possible power density of 100 nWcm‑2. When vibrated at a constant frequency the voltage output by the devices scales linearly with vibration amplitude. Also, when illuminated the output of the devices drops. These effects are consistent with a piezoelectric source of the voltage.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anton, S. R.; Sodano, H. A. Smart Mater. Struct. 16, R1R21 (2007).CrossRefGoogle Scholar
Cook-Chennault, K. A.; Thambi, N.; Sastry, A. M. Smart Mater. Struct. 17, 04300 (2008).CrossRefGoogle Scholar
Wang, Z. L.; Song, J. Science 12, 242246 (2006).CrossRefGoogle Scholar
Qin, Y.; Wang, X.; Wang, Z. L. Nature 451, 809813 (2008).CrossRefGoogle Scholar
Zhang, J.; Li, M.; Yu, L.; Liu, L.; Zhang, H.; Yang, Z. Appl. Phys. A 97, 869876 (2009).CrossRefGoogle Scholar
Xu, S.; Qin, Y.; Xu, C.; Wei, Y.; Yang, R.; Wang, Z. L. Nat. Nano. 5, 366373 (2010).CrossRefGoogle Scholar
Choi, M.-Y.; Choi, D.; Jin, M.-J.; Kim, I.; Kim, S.-H.; Choi, J.-Y.; Lee, S. Y.; Kim, J. M.; Kim, S.-W. Adv. Mater. 21, 21852189 (2009).CrossRefGoogle Scholar
Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Nano Lett. 7, 17931798 (2007).CrossRefGoogle Scholar
Briscoe, J.; Gallardo, D. E.; Dunn, S. Chem. Comm. 2009, 12731275 (2009).CrossRefGoogle Scholar
Briscoe, J.; Gallardo, D. E.; Hatch, S.; Lesnyak, V.; Gaponik, N.; Dunn, S. J. Mater. Chem. 21, 2517–252 (2011).CrossRefGoogle Scholar
Jaffe, H.; Berlincourt, D. Proc. IEEE 53, 1372 (1965).CrossRefGoogle Scholar
Hutson, A. R. Phys. Rev. Lett. 4, 505 (1960).CrossRefGoogle Scholar
Batra, I. P.; Wurfel, P.; Silverman, B. D. Phys. Rev. B 8, 3257 (1973).CrossRefGoogle Scholar
Briscoe, J.; Stewart, M.; Vopson, M.; Cain, M.; Weaver, P. M.; Dunn, S. Adv. Energy Mater., 2012, DOI:10.1002/aenm.201200205.Google Scholar
Giocondi, J. L.; Rohrer, G. S. J. Phys. Chem. B 105, 8275 (2001).CrossRefGoogle Scholar