Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T08:53:23.907Z Has data issue: false hasContentIssue false

Nanostructured Silicon-based Composites for High Temperature Thermoelectric Applications

Published online by Cambridge University Press:  01 February 2011

Sabah Bux
Affiliation:
[email protected], University of California at Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, California, United States
Richard B Kaner
Affiliation:
[email protected], University of California at Los Angeles, Department of Chemistry and Biochemistry, Los Angeles, California, United States
Jean-Pierre Fleurial
Affiliation:
[email protected], Jet Propulsion Laboratory/California Institute of Technology, Power and Sensor Systems, Pasadena, California, United States
Get access

Abstract

Recently nanostructured bulk silicon and silicon-germanium have achieved large increases in the thermoelectric figure of merit (ZT). The ZT enhancement is attributed to a significant reduction in the lattice thermal conductivity while maintaining relatively high carrier mobility. Silicon-based thermoelectric devices are attractive due to their low-toxicity, thermal stability, low density, relative abundance and low cost of production. Although significant enhancements in ZT have been achieved using the nanostructuring route, additional decoupling of the thermal and electric transport terms is still necessary in order for silicon-based materials to be viable for thermoelectric applications such as waste heat recovery or radioisotope thermoelectric generators. It is theorized that additional increases in ZT could be achieved by forming composites with nanostructured inert inclusions to further scatter the heat-carrying phonons. Here we present the impact of insulating and conductive nanoparticle composites on ZT. The nanostructured composites are formed via ball milling and high pressure sintering of the nanoparticles. The thermoelectric properties and microstructure of the silicon-based composites are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rowe, D., in CRC Handbook of Thermoelectrics (CRC Press, 2009).Google Scholar
2 Snyder, G. J. and Toberer, E. S., Nat. Mater. 7 (2), 105114 (2008).Google Scholar
3 Boukai, A. I., Bunimovich, Y., Tahir-Kheli, J., Yu, J. K., Goddard, W. A. and Heath, J. R., Nature 451 (7175), 168171 (2008).Google Scholar
4 Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A. and Yang, P., Nature 451 (7175), 163167 (2008).Google Scholar
5 Venkatasubramanian, R., Siivola, E., Colpitts, T. and O'Quinn, B., Nature 413 (6856), 597602 (2001).Google Scholar
6 Zhao, X. B., Ji, X. H., Zhang, Y. H., Zhu, T. J., Tu, J. P. and Zhang, X. B., Appl. Phys. Lett. 86 (6), 3 (2005).Google Scholar
7 Ji, X., He, J., Alboni, P., Su, Z., Gothard, N., Zhang, B., Tritt, T. M. and Kolis, J. W., Phys. Status Solidi-Rapid Res. Lett. 1 (6), 229231 (2007).Google Scholar
8 Hsu, K. F., S. Loo, Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K. and Kanatzidis, M. G., Science 303 (5659), 818821 (2004).Google Scholar
9 Dresselhaus, M. S., Chen, G., Tang, M. Y., Yang, R. G., Lee, H., Wang, D. Z., Ren, Z. F., Fleurial, J. P. and Gogna, P., Adv. Mater. 19 (8), 10431053 (2007).Google Scholar
10 Dresselhaus, M. S., Gang, C., Zhifeng, R., Fleurial, J. P., Gogna, P., Tang, M. Y., Vashaee, D., Hohyun, L., Xiaowei, W., Joshi, G., Gaohua, Z., Dezhi, W., Blair, R., Bux, S. and Kaner, R., Materials Research Society Fall 2007 Meeting, Vol. 1044, 1044–U02 (2007)Google Scholar
11 Bux, S. K., Blair, R. G., Gogna, P. K., Lee, H., Chen, G., Dresselhaus, M. S., Kaner, R. B. and Fleurial, J.-P., Adv. Funct. Mater. 19 (15), 24452452 (2009).Google Scholar
12 Zhu, G. H., Lee, H., Lan, Y. C., Wang, X. W., Joshi, G., Wang, D. Z., Yang, J., Vashaee, D., Guilbert, H., Pillitteri, A., Dresselhaus, M. S., Chen, G. and Ren, Z. F., Phys. Rev. Lett. 102 (19), 196803 (2009).Google Scholar
13 Bux, S., Fleurial, J. P., Blair, R., Gogna, P., Caillat, T. and Kaner, R., Materials Research Society Spring 2009 Meeting, Vol. 1166, 1166–N1102 (2009).Google Scholar
14 Joshi, G., Lee, H., Lan, Y. C., Wang, X. W., Zhu, G. H., Wang, D. Z., Gould, R. W., Cuff, D. C., Tang, M. Y., Dresselhaus, M. S., Chen, G. and Ren, Z. F., Nano Lett. 8 (12), 46704674 (2008).Google Scholar
15 Wang, X. W., Lee, H., Lan, Y. C., Zhu, G. H., Joshi, G., Wang, D. Z., Yang, J., Muto, A. J., Tang, M. Y., Klatsky, J., Song, S., Dresselhaus, M. S., Chen, G. and Ren, Z. F., Appl. Phys. Lett. 93 (19), 3 (2008).Google Scholar
16 Scoville, N., Bajgar, C., Rolfe, J., Fleurial, J. P. and Vandersande, J., Nanostruct. Mater. 5 (2), 207223 (1995).Google Scholar
17 Mingo, N., Hauser, D., Kobayashi, N. P., Plissonnier, M. and Shakouri, A., Nano Lett. 9 (2), 711715 (2009).Google Scholar
18 Cook, B. A., Beaudry, B. J., Harringa, J. L. and Barnett, W. J., Proceedings of the International Energy Conversion Engineering Conference, 693, (1989).Google Scholar
19 Faleev, S. V. and Leonard, F., Phys. Rev. B. 77 (21), 9 (2008).Google Scholar
20 Vining, C. B., J. Appl. Phys. 69 (1), 331341 (1991).Google Scholar