Published online by Cambridge University Press: 01 February 2011
We investigated the interplay between different mechanisms of the lateral and vertical segregation in the synthesized via “grafting from” approach symmetric A/B (where A and B are poly(styrene-co-2,3,4,5,6-pentafluorostyrene) and poly(methylmethacrylate), respectively) polymer brushes upon exposure to different solvents. We used X-ray photoemission electron spectroscopy and microscopy (X-PEEM), AFM, water contact angle measurements, and oxygen plasma etching to study morphology of the brushes. The ripple morphology after toluene (nonselective solvent) revealed elongated lamellar-like domains of A and B polymers alternating across the surface. The dimple-A morphology consisting of round clusters of the polymer A was observed after acetone (selective solvent for B). The top layer was enriched with the polymer B showing that the brush underwent both the lateral and vertical phase segregation. A qualitative agreement with predictions of SCF theory was found.