No CrossRef data available.
Published online by Cambridge University Press: 01 March 2013
This investigation deals with the production process and the characterization of ceramic materials consisting of magnetic particles in an insulating matrix. Composites made of magnetite particles (Fe3O4 or MgFe2O4) in a wüstite or magnesiowüstite matrix (FexO or Mg1-xFexO), respectively, have been produced by means of mechanical milling and spark plasma sintering. As-milled powders have a nanocrystalline structure in both systems. As a function of milling time, low energy milling gives rise to an increasingly higher volume fraction of wüstite in the FexO-Fe3O4 system while it promotes increasing amounts of magnesiowüstite (MgxFe1-xO). Sintering is performed from 673 to 1273 K in vacuum. Sintering at low temperatures allows retention of nanosized grains containing a fine dispersion of magnetic particles in a wüstite and magnesiowüstite matrix. Measurement of magnetic properties reflects the constitution of the sintered samples and the effect of grain size. It also allows determination of the transformation sequence both during mechanical milling and sintering