Article contents
Nanostructured Antireflection Coatings for Optical Detection and Sensing Applications
Published online by Cambridge University Press: 10 July 2015
Abstract
Optical components such as lenses, glass windows, and prisms are subject to Fresnel reflection due to the mismatch between the refractive indices of the air and glass. An optical interface layer, i.e., antireflection (AR) layer, is needed to eliminate this unwanted reflection at the air/glass interface. Nanostructured broadband and wide-angle AR structures have been developed using a scalable self-assembly process. Ultra-high performance of the nanostructured AR coatings has been demonstrated on various substrates such as quartz, sapphire, polymer, and other materials typically employed in optical lenses. AR coatings on polycarbonate lead to optical transmittance enhancement from approximately 90% to almost 100% for the entire visible, and part of the near-infrared (NIR), band. The AR coatings have also been demonstrated on curved surfaces. AR coatings on n-BK7 lenses enable ultra-high light transmittance for the entire visible, and most of the NIR, spectrum. Nanostructured oxide layers with step-graded index profiles, deposited onto the optical elements of an optical system, can significantly increase sensitivity, and hence improve the overall performance of the system.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2015
References
REFERENCES
- 3
- Cited by