Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T17:12:42.317Z Has data issue: false hasContentIssue false

Nanostructure formation in bulk thermoelectric compounds in the pseudo binary PbTe-Sb2Te3 system

Published online by Cambridge University Press:  01 February 2011

Teruyuki Ikeda
Affiliation:
[email protected], Japan Science and Technology Agency, Kawaguchi, Japan
Jeffery Synder
Affiliation:
[email protected], California Institute of Technology, Materials Science, Pasadena, California, United States
Get access

Abstract

Studies on microstructures in thermoelectric compounds in the pseudobinary PbTe-Sb2Te3 system are overviewed and strategies to control the microstructure of thermoelectric compounds are discussed on the basis of the phase diagram and phase transformation theories. The morophology of solidification from the melt results in dendrite or lamellar structure depending on composition. The size-scales of the microstructures obtained by solidification can be controlled from the order of micrometers to tens of micrometers by controlling cooling rates (dendrites) or solidification velocity (lamellae). Lamellar and Widmansttäten structures are obtained by eutectoid (Pb2Sb6Te11 → PbTe + Sb2Te3) and precipitation (PbTe (Sb2Te3) → PbTe + Sb2Te3) reactions, respectively. These solid-state transformations show features with nanometer size-scales. For the eutectoid reaction the size-scale depends on annealing temperature and time. For precipitation, the size-scale depends on composition as well as cooling rate or annealing temperature. Such behavior can be understood in terms of phase transformation theories.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., Nature 413, 597 (2001).Google Scholar
2 Caylor, J. C. Coonley, K. Stuart, J. Colpitts, T. and Venkatasubramanian, R. Applied Physics Letters 87, 023105 (2005).Google Scholar
3 Harman, T. C. Taylor, P. J. Walsh, M. P. and LaForge, B. E. Science 297, 2229 (2003).Google Scholar
4 Chen, G. in: Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No. 04CH37543), 2004, p. 8.Google Scholar
5 Kim, W. Zide, J. Gossard, A. Klenov, D. Stemmer, S. Shakouri, A. and Majumdar, A. Physical Review Letters 96, 045901 (2006).Google Scholar
6 Chen, G. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES 29, 238 (2006).Google Scholar
7 Yang, R. and Chen, G. Materials Integration 18, 31 (2005).Google Scholar
8 Nolas, G. S. and Goldsmid, H. J. Thermal conductivity of semiconductors, in: Tritt, M. (Ed.) Thermal conductivity. Theory properties, and applications., Springer Science + Business Media, LLC, New York, 2004, pp. 105.Google Scholar
9 Goldsmid, H. J. and Penn, R. W. Physics Letters A27, 523 (1968).Google Scholar
10 Dames, C. and Chen, G. Thermal Conductivity of Nanostructured Thermoelectric Materials, in: Rowe, D. M. (Ed.) Thermoelectircs Handbook: Macro to Nano, CRC Press, 2005.Google Scholar
11 Medlin, D. L. and Snyder, G. J. Current Opinion in Colloidal and Interface Science 14, 226 (2009).Google Scholar
12 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. and Kanatzidis, M. G. Science 303, 818 (2004).Google Scholar
13P. Poudeu, F. P. J. D'Angelo, Kong, H. Downey, A. Short, J. L. Pcionek, R. Hogan, T. P. Uher, C. and Kanatzidis, M. G. Journal of American Chemical Society 128, 14347 (2006).Google Scholar
14 Heremans, J. P. Thrush, C. M. and Morelli, D. T. Journal of Applied Physiscs 98, 063703 (2005).Google Scholar
15 Sootsman, J. R. Pcionek, R. J. Kong, H. Uher, C. and Kanatzidis, M. G. Chem. Mater. 18, 4993 (2006).Google Scholar
16 Pei, Y. Lensch-Falk, J., Medlin, D. L. and Snyder, G. J. To be published (2010).Google Scholar
17 Androulakis, J. Lin, C.H. Kong, H.J. Uher, C. Wu, C.I. Hogan, T. Cook, B. A. Caillat, T. Paraskevopoulos, K. M. and Kanatzidis, M. G. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 129, 9780 (2007).Google Scholar
18 Poudel, B. Hao, Q. Ma, Y. Lan, Y. Minnich, A. Yu, B. Yan, X. Wang, D. Muto, A. Vashaee, D. Chen, X. Liu, J. Dresselhaus, M. S. Chen, G. and Ren, Z. Science 320, 634 (2008).Google Scholar
19 Abrikosov, N. K. Elagina, E. I. and Popova, M. A. Inorg. Mater. 1, 1944 (1965).Google Scholar
20 Rogacheva, E. I. and Laptev, S. A. Inorg. Mater. 20, 1160 (1984).Google Scholar
21 Ikeda, T. Vilupanur, A. R. and Snyder, G. J. To be published (2010).Google Scholar
22 Shelimova, L. E. Karpinskii, O. G. Svechnikova, T. E. Avilov, E. S. Kretova, M. A. and Zemskov, V. S. Inorg. Mater. 40, 1264 (2004).Google Scholar
23 Ikeda, T. Haile, S. M. Ravi, V. A. Azizgolshani, H. Gascoin, F. and Snyder, G. J. Acta Mater. 55, 1227 (2007).Google Scholar
24 Hirai, T. Takeda, Y. and Kurata, K. J. Less-Common Met. 13, 352 (1967).Google Scholar
25 Reynolds, R. A. Journal of Electrochemcal Society 114, 526 (1967).Google Scholar
26 Ikeda, T. Ravi, V. A. and Snyder, G. J. Acta Mater. 57, 666 (2009).Google Scholar
27 Ikeda, T. Ravi, V. A. and Snyder, G. J. Metall. Mater. Trans. 41A, 641 (2010).Google Scholar
28 Carslaw, H. S. and Jaeger, J. C. Conduction of heat in solids, (Clarendon, 1959).Google Scholar
29 Bouchard, D. and Kirkaldy, J. S. Metall. Mater. Trans. 28B, 651 (1997).Google Scholar
30 Chalmers, B. Principle of solidification, (Wiley, 1964).Google Scholar
31 Poirier, D. R. and Poirier, E. J. Heat Transfer Fundamentals, (TMS, 1992).Google Scholar
32 Niiyama, E. Chuuzou Dennetsu Kougaku, (Agne Gijutsu Center, 2001).Google Scholar
33 Ikeda, T. Ravi, V. A. Collins, L. A. Haile, S. M. and Snyder, G. J. J. Electr. Mater. 37, 716 (2007).Google Scholar
34 Kolmogorov, A. N. Bull. Acad. Sci., USSR, Phys. Ser. 1, 355 (1937).Google Scholar
35 Johnson, W. A. and Mehl, R. F. Trans. AIME 135, 416 (1939).Google Scholar
36 Avrami, M. J. Chem. Phys. 7, 1103 (1939).Google Scholar
37 Avrami, M. J. Chem. Phys. 8, 212 (1940).Google Scholar
38 Avrami, M. J. Chem. Phys. 9, 177 (1941).Google Scholar
39 Machlin, E. S. An introduction to aspects of thermodynamics and kinetics, (Giro Press, 1999).Google Scholar
40 Graham, L. D. and Kraft, R. W. Trans. Metall. Soc. AIME 236, 94 (1966).Google Scholar
41 Cline, H. E. Acta Metallurgica 19, 481 (1971).Google Scholar
42 Zener, C. Trans. AIME 167, 550 (1946).Google Scholar
43 Howe, J. M. Interfaces in Materials, (John Willey & Sons, Inc., 1997).Google Scholar
44 Gerstl, S. S. A. Kim, Y.W. and Sedman, D. N. Interface Science 12, 303 (2004).Google Scholar
45 Ikeda, T. Toberer, E. S. Ravi, V. A. Haile, S. M. and Snyder, G. J. Lattice thermal conductivity of self-assembled PbTe-Sb2Te3 composites with nanometer lamellae, in: 26th International Conference on Thermoelectrics, Jeju, South Korea, 2007.Google Scholar
46 Ikeda, T. Collins, L. A. Ravi, V. A. Gascoin, F. S. Haile, S. M. and Snyder, G. J. Chem. Mater. 19, 763 (2007).Google Scholar
47 Ikeda, T. Toberer, E. S. Ravi, V. A. Snyder, G. J. Aoyagi, S. Nishiboric, E. and Sakatac, M. Scripta Materialia 60, 321 (2009).Google Scholar
48 Wood, C. Rep. Prog. Phys. 51, 459 (1988).Google Scholar
49 Zhu, P. Imai, Y. Isoda, Y. Shinohara, Y. Jia, X. and Zou, G. Materials Transactions 46, 1810 (2005).Google Scholar
50 Su, T. Zhu, P. Ma, H. Ren, G. Guo, J. Imai, Y. and Jia, X. Journal of Alloys and Compounds 422, 328 (2006).Google Scholar
51 Aaronson, H. I. in: Zackay, V. F. Aaronson, H. I. (Eds.), Decomposition of Austenite, Interscience Publisher, New York, 1962, p. 387.Google Scholar
52 Jeng, M. S. Yang, R. Song, D. and Chen, G. Journal of Heat Transfer 130, 042410 (2008).Google Scholar
53 Ikeda, T. Marolf, N. J. Toussaint, M. B. Heinz, N. A. and Snyder, G. J. Manuscript in preparation (2010).Google Scholar
54 Doherty, R. D. Diffusive phase transformations in the solid state, in: Haasen, R. W. C. a. P. (Ed.) Physical Metallurgy, vol II, Elsevier Science, Amsterdam, 1996, p. 1374.Google Scholar
55 Russ, J. C. Practical stereology, (Plenum Press, 1986).Google Scholar