Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:34:52.991Z Has data issue: false hasContentIssue false

Nanostructure and Strain Field in Vertically Aligned Nano-Islands for Si/Ge 2D Photonic Nanocrystals.

Published online by Cambridge University Press:  22 March 2013

Takanori Kiguchi
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Yusuke Hoshi
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Takeshi Tayagaki
Affiliation:
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan PRESTO, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan
Noritaka Usami
Affiliation:
Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
Get access

Abstract

The local strain field and the intermixing of a Ge nano-islands (NIs)/Si spacer stacked structure in a novel solar cell with a p-i-n type Si single crystal with two-dimensional photonic nanocrystals connecting to the vertically aligned NIs were analyzed using electron microscopy. High-angle annular dark field-scanning transmission electron microscope (HAADF-STEM) images show intermixing between Ge and Si clearly and reveal that the surface segregation of Ge becomes advanced. The average composition of the NIs is Ge0.42Si0.58, which is almost constant in a row of vertically aligned NIs. The local strain analysis results obtained from the high-resolution transmission electron microscope (HRTEM) images show that the strain state is partially relaxed after the elastic relaxation of NIs.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Usami, N., Pan, W., Tayagaki, T., Chu, S.-T., Li, J., Feng, T., Hoshi, Y., and Kiguchi, T., Nanotechnology, 23, 185401 (2012).CrossRefGoogle Scholar
Eaglesham, D. J. and Cerullo, M., Phys. Rev. Lett., 64, 1943 (1990).CrossRefGoogle Scholar
Cherns, D., Kiely, C.J, and Preston, A.R., Ultramicroscopy, 24, 355 (1988).CrossRefGoogle Scholar
Vincent, R., Preston, A.R., and King, M.A., Ultramicroscopy, 24, 409 (1988).CrossRefGoogle Scholar
Chou, C.T., Anderson, S.C., Cockayne, D.J.H., Shikorski, A.Z., and Vaughan, M.R., Ultramicroscopy, 55, 334 (1994).CrossRefGoogle Scholar
Ide, T., Sakai, A., and Shimizu, K., Thin Solid Films, 357, 22 (1999).CrossRefGoogle Scholar
Robertson, M.D., Currie, J.E., Corbett, J.M., and Webb, J.B., Ultramicroscopy, 58, 175 (1998).CrossRefGoogle Scholar
Hÿtch, M.J., Snoeck, E., and Kilaas, R., Ultramicroscopy, 74, 131 (1998).CrossRefGoogle Scholar
Ross, F.M., Killas, R., Snoeck, E., Hÿtch, M., Thorel, A. and Normand, L., Mater. Res. Soc. Symp. Proc. 466, 245 (1997).CrossRefGoogle Scholar
Foeth, M., Sfera, A., Stadelmann, P., and Buffat, P.A., J. Electron Microsc. 48, 717 (1999).CrossRefGoogle Scholar
Chu, M.W., Szafraniak, I., Scholz, R., Harnagea, C., Hesse, D., Alexe, M., and Gösele, U., Nat. Mater. 3, 87 (2004).CrossRefGoogle Scholar
Kiguchi, T., Aoyagi, K., Konno, T.J., Utsugi, S., Yamada, T., and Funakubo, H., Sci. Technol. Adv. Mater. 12, 034413 (2011).CrossRefGoogle Scholar
Kiguchi, T., Aoyagi, K., Konno, T.J., Utsugi, S., Yamada, T., and Funakubo, H., Mater. Res. Soc. Symp. Proc. 1199, 1199–F09-08 (2010).Google Scholar
Hÿtch, M.J., Putaux, J.-L., and Penisson, J.-M., Nature, 243, 270 (2003).CrossRefGoogle Scholar
Johnson, C.L., Snoeck, E., Ezcurdia, M., Rodriguez-Gonzalez, B., Pastoriza-Santos, I., Liz-Marzan, L.M., and Hÿtch, M.J., Nat. Mater. 7, 120 (2008).CrossRefGoogle Scholar
Sennour, M., Lartigue-Korinek, S., Champion, Y., and Hÿtch, M.J., J. Mater. Sci. 43, 3806 (2008).CrossRefGoogle Scholar