Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:04:47.601Z Has data issue: false hasContentIssue false

Nanostructuration of Cr/Si layers induced by ion beam mixing

Published online by Cambridge University Press:  22 February 2013

L. Luneville
Affiliation:
DEN/DANS/DM2S/SERMA/LLPR/LRC-CARMEN, CEA Saclay, 91191 Gif-sur-Yvette, France
L. Largeau
Affiliation:
LPN-UPR20/CNRS, Route de Nozay, 91460 Marcoussis, France
C. Deranlot
Affiliation:
Unité Mixte de Physique CNRS/Thales, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
N. Moncoffre
Affiliation:
IPNL-IN2P3, 69622 Villeurbanne, France
Y. Serruys
Affiliation:
DEN/DANS/DMN/SRMP, CEA Saclay, 91191 Gif-sur-Yvette, France
F. Ott
Affiliation:
DSM/IRAMIS/LLB, CEA Saclay, 91191 Gif-sur-Yvette, France
G. Baldinozzi
Affiliation:
CNRS-SPMS/UMR 8580/ LRC CARMEN Ecole Centrale Paris, 92295 Châtenay-Malabry, France
D. Simeone
Affiliation:
DEN/DANS/DMN/SRMA/LA2M/LRC-CARMEN, CEA Saclay, 91191 Gif-sur-Yvette, France
Get access

Abstract

This work clearly demonstrates that the X Ray Reflectometry technique (XRR), extensively used to assess the quality of microelectronic devices can be a useful tool to study the first stages of ion beam mixing. This technique allows measuring the evolution of the Si concentration profile in irradiated Cr/Si layers. From the analysis of the XRR profiles, it clearly appears that the Si profile cannot be described by a simple error function.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reader, A., Ommen, A., Weijs, P, Walter, R., Ostra, D., Rep. Prog. Phys. 56, 1397 (1992).10.1088/0034-4885/56/11/002CrossRefGoogle Scholar
Calandra, C., Bisi, O., Ottaviani, G., Surf. Sci. Rep. 4, 271 (1985).10.1016/0167-5729(85)90005-6CrossRefGoogle Scholar
Rubloff, G., Surf. Sci. 132, 268 (1983).10.1016/0039-6028(83)90543-5CrossRefGoogle Scholar
Wei, L., Averback, R., J. of Appl. Phys. 81, 613 (1997).10.1063/1.364202CrossRefGoogle Scholar
Chang, L., Segmuller, A., Esaki, L., Appl. Phys. Lett. 28, 39 (1976).10.1063/1.88558CrossRefGoogle Scholar
Parrat, L., Phys. Rev. 95, 359 (1954).10.1103/PhysRev.95.359CrossRefGoogle Scholar
Daillant, J., Gibaud, A., X-ray and Neutron Reflectivity: Principles and Applications. Berlin, Heidelberg: Springer. (1999).Google Scholar
see for a comprehensive review Y. Cheng, Mater. Sci. Rep. 5, 45 (1990).Google Scholar
Sigmund, P., Gras Marti, A., Nucl. Instr.. and Meth. 182183, 25 (1981).10.1016/0029-554X(81)90668-6CrossRefGoogle Scholar
Simeone, D., Baldinozzi, G., Gosset, D., Berar, J., J. of Appl. Cryst. 44, 1205 (2011).10.1107/S0021889811042294CrossRefGoogle Scholar
Nastasi, A., Mayer, J., Hirvonen, J., Ion Solid interaction: Fundamentals and Applications, Cambridge University Press, (1996).10.1017/CBO9780511565007CrossRefGoogle Scholar
Averback, R., Rehn, L., Wagner, W., Wiedersich, H., Okamoto, P., Phys. Rev. B 28(6), 3100 (1983).10.1103/PhysRevB.28.3100CrossRefGoogle Scholar
Desimoni, J., Traverse, A., Phys. Rev. B 48(13), 266 (1993).10.1103/PhysRevB.48.13266CrossRefGoogle Scholar
Johnson, W., Cheng, Y., Van Rossum, M., Nicolet, M., Nucl. Inst. and Meth.. in Phys. Res. B 7/8, 657 (1985).10.1016/0168-583X(85)90450-1CrossRefGoogle Scholar
Tobbeche, S., Boukhari, A, Khalfaoui, R., Amokrane, A., Benazzouz, C., Guittoum, A., Nucl. Instr.. and Method in Phys. Res. B 269(24), 3242 (2011).10.1016/j.nimb.2011.04.089CrossRefGoogle Scholar