Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:02:00.606Z Has data issue: false hasContentIssue false

Nanosized Amorphous Materials as Anodes for Lithium Batteries

Published online by Cambridge University Press:  26 February 2011

Quan Fan
Affiliation:
[email protected], State Univ. of New York at Binghamon, Chemistry, 25 Davis St, Apt 1, Binghamton, NY, 13905, United States, 201-887-3572
M. Stanley Whittingham
Affiliation:
[email protected], State Univ. of New York at Binghamton, Dept. of Chemistry, Binghamton, NY, 13902, United States
Get access

Abstract

The carbon anode presently used in commercial lithium ion batteries has a relatively low capacity and may pose safety problems particularly under fast charging. Nanosized amorphous materials have excellent electrochemical behavior when applied as anodes for lithium ion batteries; especially they have advantages over bulk materials on capacity retention and rate capability. The initial studies on some amorphous compounds are promising. A commercialized tin-cobalt-carbon amorphous material, which is composed of ∼5nm nanoparticles, shows a capacity retention of >350 mAh/g for 50+ cycles. Manganese oxide nanofibers were synthesized by polymer templated electrospinning followed by calcinations. The fibers have 200-500 nm diameter and the main composition is Mn3O4. The capacity remains 400 mAh/g for at least 50 cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whittingham, M. S., Chem. Rev., 104, 4271 (2004).Google Scholar
2. Tarascon, J-M., andArmand, M., Nature, 414, 359 (2001).Google Scholar
3. Whittingham, M. S., Song, Y., Lutta, S., Zavalij, P. Y., andChernova, N., J. Mater. Chem., 15, 3362 (2005)Google Scholar
4. Chen, J., andWhittingham, M. S., Electrochem. Commun., 8, 855 (2006).Google Scholar
5. Fan, Q., andWhittingham, M. S., Mater. Res. Soc. Proc., 835: K6.16 (2005).Google Scholar
6. Benedek, R., andThackeray, M.M., J. Power Sources, 110, 406 (2002).Google Scholar
7. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., andTarascon, J. M., Nature, 407, 496 (2000).Google Scholar
8. Pralong, V., Leriche, J. B., Beaudoin, B., Naudin, E., Morcrette, M., andTarascon, J.M., Solid State Ionics, 166, 295 (2004).Google Scholar
9. Liao, C. L., Lee, Y. H., Chang, S. T., andFung, K. Z., J. Power Sources, 158, 1379 (2006)Google Scholar
10. Wu, M-S., andChiang, P. J., Electrochem. Commun., 8, 383 (2006)Google Scholar
11. Yang, R., Wang, Z., Liu, J., andChen, L., Electrochem. Solid-State Lett., 7, A496 (2004).Google Scholar
12. Yuan, L., Guo, Z. P., Konstantinov, K., Munroe, P., andLiu, H. K., Electrochem. Solid-State Lett., 9, A524 (2006).Google Scholar
13. Fan, Q., andWhittingham, M. S., Electrochem. Solid-State Lett., accepted.Google Scholar
14. Graetz, J., Ahn, C. C., Yazami, R., andFultz, B., Electrochem. Solid-State Lett., 6, A194 (2003).Google Scholar
15. Liu, Y., Hanai, K., Yang, J., Imanishi, N., Hirano, A., andTakeda, Y., Solid State Ionics, 168, 61 (2004).Google Scholar
16. Wang, G. X., Yao, J., andLiu, H. K., Electrochem. Solid-State Lett., 7, A250 (2004)Google Scholar
17. Mao, O., andDahn, J. R., J. Electrochem. Soc., 146, 423 (1999).Google Scholar
18. Beaulieu, L.Y., andDahn, J. R., J. Electrochem. Soc., 147, 3237 (2000)Google Scholar
19. Dahn, J. R., Mar, R. E., andAbouzeid, Alyaa, J. Electrochem. Soc., 153, A361 (2006).Google Scholar
20. Kawakami, S. andAsao, M., Eur. Pat. Appl., EP1039568A1 (2000).Google Scholar
21. Fan, Q., andWhittingham, M. S., Electrochem. Solid-State Lett., submitted.Google Scholar