Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:20:14.877Z Has data issue: false hasContentIssue false

Nanosecond and picosecond laser structuring of electrode materials for lithium-ion batteries

Published online by Cambridge University Press:  15 June 2012

Robert Kohler
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-AWP) P.O. Box 3640, 76021 Karlsruhe, Germany
Johannes Proell
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-AWP) P.O. Box 3640, 76021 Karlsruhe, Germany
Heino Besser
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-AWP) P.O. Box 3640, 76021 Karlsruhe, Germany
Maika Torge
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-AWP) P.O. Box 3640, 76021 Karlsruhe, Germany
Steffen Scholz
Affiliation:
Manufacturing Engineering Centre, Cardiff University, CF24 3AA, UK
Todor Dobrev
Affiliation:
Manufacturing Engineering Centre, Cardiff University, CF24 3AA, UK
Sven Ulrich
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-AWP) P.O. Box 3640, 76021 Karlsruhe, Germany
Wilhelm Pfleging
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-AWP) P.O. Box 3640, 76021 Karlsruhe, Germany Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Platz 1, 76344 Egg.-Leopoldshafen, Germany
Get access

Abstract

A comparative study for picosecond and nanosecond laser structuring was performed in order to identify structure geometries and dimensions that efficiently reduce the significant volume changes during electrochemical cycling of SnO2, a promising anode material. Line structures with widths of 20 μm could significantly improve cycling stability of 3 μm thick magnetron sputtered SnO2 thin films. A reduction of structure size led to further improvement of capacity retention. Free-standing conical micro-structures exhibited the best cycling behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, J.L., Daniel, C. and Wood, D., J. Power Sources 196, 24522460 (2011).Google Scholar
2. Nathan, M., Curr. Pharm. Biotechnol. 11, 404410 (2010).Google Scholar
3. Winter, M. and Brodd, R.J., Chem. Rev. 104, 42454269 (2004).Google Scholar
4. Etacheri, V., Marom, R., Elazari, R., Salitra, G. and Aurbach, D., Energy Environ. Sci. 4, 32433262 (2011).Google Scholar
5. Wang, J.Z., Du, N., Zhang, H., Yu, J.X. and Yang, D.R., J. Phys. Chem. C 115, 1130211305 (2011).Google Scholar
6. Courtney, I.A. and Dahn, J.R., J. Electrochem. Soc. 144, 20452052 (1997).Google Scholar
7. Zhang, W.-J., J. Power Sources 196, 1324 (2011).Google Scholar
8. Kohler, R., Proell, J., Ulrich, S., Przybylski, M. and Pfleging, W., in Proc. of SPIE 7921, edited by Pfleging, W., Lu, Y., Washio, K., Amako, J. and Hoving, W.. (SPIE, San Francisco, 2011), pp. 111.Google Scholar
9. Pfleging, W., Kohler, R., Scholz, S., Ziebert, C. and Proell, J. in Laser-Material Interactions at Micro/Nanoscales edited by Lu, Y., Arnold, C.B., Grigoropoulos, C.P., Stuke, M. and Yalisove, S.M. (MRS Spring Meeting 1365, San Francisco, CA, 2011).Google Scholar
10. Zhao, Y.M., Zhou, Q., Liu, L., Xu, J., Yan, M.M. and Jiang, Z.Y., Electrochim. Acta 51, 26392645 (2006).Google Scholar
11. Wang, T., Ma, Z.N., Xu, F. and Jiang, Z.Y., Electrochem. Commun. 5, 599602 (2003).Google Scholar
12. Yang, Z.X., Du, G.D., Feng, C.Q., Li, S.A., Chen, Z.X., Zhang, P., Guo, Z.P., Yu, X.B., Chen, G.N., Huang, S.Z. and Liu, H.K., Electrochim. Acta 55, 54855491 (2010).Google Scholar
13. Aurbach, D., Nimberger, A., Markovsky, B., Levi, E., Sominski, E. and Gedanken, A., Chem. Mat. 14, 41554163 (2002).Google Scholar