Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:04:44.186Z Has data issue: false hasContentIssue false

Nanoscale scanning near-field ellipsometric microscopy (SNEM) imaging of heterogeneous polymers

Published online by Cambridge University Press:  27 February 2014

Aysegul Cumurcu
Affiliation:
Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, Enschede, NL-7500, The Netherlands.
Joost Duvigneau
Affiliation:
Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, Enschede, NL-7500, The Netherlands.
Ian D. Lindsay
Affiliation:
Nanophysics and Soft Matter Group, H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom.
Peter Schön
Affiliation:
Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, Enschede, NL-7500, The Netherlands.
G. Julius Vancso*
Affiliation:
Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, Enschede, NL-7500, The Netherlands.
*
*Corresponding author: Prof. G. Julius Vancso, Tel: +31(0)53-4892967 Fax: +31 (0)53 489 3823 E-mail: [email protected]
Get access

Abstract

In this study a scanning near-field ellipsometric microscope (SNEM), a hybrid device of an atomic force microscope (AFM) and an ellipsometer, is used to obtain optical images of heterogeneous polymer thin films with a resolution below the diffraction limit of light. SNEM optical images of a microphase separated PS-b-P2VP block copolymer film collected with gold coated and bare silicon AFM probe tips were compared to obtain a deeper insight into the nature of the SNEM contrast mechanism. Furthermore, intensity vs. distance curves were recorded on a PS-b-PMMA block copolymer film simultaneously during the acquisition of force-displacement curves to study the far-field contribution of the optical signal to the optical image.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schönherr, H., Vancso, G.J., Scanning force microscopy of polymers, Springer, Berlin Heidelberg, 2010.CrossRefGoogle Scholar
Flores, S.M., Toca-Herrera, J.L., Nanoscale, 1 (2009) 4049.CrossRefGoogle Scholar
Karageorgiev, P., Orendi, H., Stiller, B., Brehmer, L., Appl Phys Lett, 79 (2001) 17301732.CrossRefGoogle Scholar
Liu, Z., Zhang, Y., Kok, S.W., Ng, B.P., Soh, Y.C., Opt Express, 18 (2010) 32983310.CrossRefGoogle Scholar
Liu, Z., Zhang, Y., Kok, S.W., Ng, B.P., Soh, Y.C., Ultramicroscopy, 124 (2013) 2634.CrossRefGoogle Scholar
Tranchida, D., Diaz, J., Schön, P., Schönherr, H., Vancso, G.J., Nanoscale, 3 (2011) 233239.CrossRefGoogle Scholar
Cumurcu, A., Duvigneau, J., Lindsay, I.D., Schön, P.M., Vancso, G.J., Eur Polym J, 49 (2013) 19351942.CrossRefGoogle Scholar
Bachelot, R., Gleyzes, P., Boccara, A.C., Opt Lett, 20 (1995) 19241926.CrossRefGoogle Scholar
David, T., Chicanne, C., Richard, N., Krenn, J.R., Scheurer, F., Ounadjela, K., Hehn, M., Lacroute, Y., Goudonnet, J.P., Rev Sci Instrum, 70 (1999) 45874594.CrossRefGoogle Scholar
Weston, K.D., Buratto, S.K., J Phys Chem B, 101 (1997) 56845691.CrossRefGoogle Scholar
Hecht, B., Bielefeldt, H., Inouye, Y., Pohl, D.W., Novotny, L., J Appl Phys, 81 (1997) 24922498.CrossRefGoogle Scholar
Kaupp, G., Herrmann, A., Haak, M., J Phys Org Chem, 12 (1999) 797807.3.0.CO;2-S>CrossRefGoogle Scholar
Li, X., Peng, J., Wen, Y., Kim, D.H., Knoll, W., Polymer, 48 (2007) 24342443.CrossRefGoogle Scholar
Morkved, T.L., Jaeger, H.M., Europhys Lett, 40 (1997) 643648.CrossRefGoogle Scholar
Zhang, X.H., Berry, B.C., Yager, K.G., Kim, S., Jones, R.L., Satija, S., Pickel, D.L., Douglas, J.F., Karim, A., Acs Nano, 2 (2008) 23312341.CrossRefGoogle Scholar