Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T19:33:25.384Z Has data issue: false hasContentIssue false

Nanoscale heterostructures comprised of silicon nanowires and gold nanoparticles encapsulated in graphitic shells for DNA immobilization

Published online by Cambridge University Press:  24 July 2013

Yuan Li
Affiliation:
Metallurgical and Materials Engineering Department, Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, U.S.A.
Nitin Chopra*
Affiliation:
Metallurgical and Materials Engineering Department, Center for Materials for Information Technology (MINT), The University of Alabama, Tuscaloosa, AL 35487, U.S.A. Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, U.S.A.
*
*Corresponding Author E mail: [email protected], Tel: 205-348-4153, Fax: 205-348-2164
Get access

Abstract

Deoxyribonucleic acid (DNA) immobilization on nanoscale architectures is critical for developing bio-compatible devices and clinical diagnoses. In this study, silicon nanowires (SiNWs) were combined with gold nanoparticles encapsulated in graphitic shells (GNPs). The resulting SiNWs-GNPs heterostructures were plasma oxidized to create carboxylic (-COOH) functionality on the surface of the graphitic carbon shell. These heterostructures and their surface chemistries were studied using electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. The –COOH terminated graphitic shells in heterostructures were covalently linked with DNA. The DNA molecules on these heterostructures were detected by linking with fluorescent streptavidin and observed under a fluorescence microscope. Such inorganic heterostructure-biomolecule assemblies can be very useful in the development of biomolecule analysis and detection devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lu, C., Yang, H., Zhu, C., Chen, X., and Chen, G., Angew. Chem. 121, 4879 (2009).CrossRefGoogle Scholar
Lu, Ye, Goldsmith, B. R., and Kybert, N. J., Appl. Phy. Lett. 97, 083107 (2010).CrossRefGoogle Scholar
Yossi, W., Chenoweth, D. M., and Swager, T. M., J. Am. Chem. Soc. 132, 14009 (2010).Google Scholar
Daniel, S., Rao, T. P., Rao, K. S., Rani, S. U., Naidu, G. R. K., Lee, H. Y., and Kawai, T., Sensor. Actuat. B-Chem. 122, 672 (2007).CrossRefGoogle Scholar
Hong, C., Cao, X., Jiang, Y., He, P., and Fang, Y.. Anal. and Bioanal. Chem. 375, 287 (2003).Google Scholar
Wenrong, Y., Thordarson, P., Gooding, J. J., Ringer, S. P., and Braet, F.. Nanotechnology 18, 412001 (2007).Google Scholar
Xu, W., Liu, F., Andavan, G. S., Jing, X., Singh, K., Yazdanpanah, V. R., and Bruque, N., Small 2, 1356 (2006).Google Scholar
Keith, W., Veenhuizen, P. T. M., Torre, B. G., Eritja, R., and Dekker, C.. Nature 420, 38 (2002).Google Scholar
Wei, L., Guo, M., Liang, M., Jin, F., Cui, L., Zhi, L., and Yang, Q., J. Mater. Chem. 20, 6668 (2010).CrossRefGoogle Scholar
Cui, Y., Wei, Q., Park, H., and Lieber, C. M., Science, 293 1289 (2001).CrossRefGoogle Scholar
Li, Z., Chen, Y., Li, X., Kamins, T. I., Nauka, K., and Williams, R. S.. Nano Lett. 4, 245 (2004).CrossRefGoogle Scholar
Lv, M., Su, S., He, Y., Huang, Q., Hu, W., Li, D., and Lee, S. T., Adv. Mater. 22, 5463 (2010)..CrossRefGoogle Scholar
Wu, J., Shi, W., and Chopra, N.. J. Phys. Chem. C. 116, 12861 (2012).CrossRefGoogle Scholar
Hermanson, G. T., Bioconjugate techniques, 1996, San Diego, CA, Elsevier Science.Google Scholar
Chopra, N., Bachas, L. G., and Knecht, M., Chem. Mater. 21, 1176 (2009).CrossRefGoogle Scholar
Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J., and Lieber, C. M., Appl. Phy. Lett. 78, 2214 (2001).CrossRefGoogle Scholar
Ponkumar, S., Duraisamy, P., and Iyandurai, N.. Am. J. Biochem. Biotechnol. 7, 135 (2011).Google Scholar
Liviu, M., Benevides, J. M., and Thomas, G. J.. J Raman Spectrosc. 30, 637 (1999).Google Scholar
Duguid, J., Bloomfield, V. A., Benevides, J. M., and Thomas, G. J., Biophys. J. 65, 1916 (1993).CrossRefGoogle Scholar
Chopra, N., Majumder, M., Hinds, B. J., Adv. Func. Mater. 15, 858 (2005).CrossRefGoogle Scholar
Hung, A. M., Michee, C. M., Bozano, L. D., Osterbur, L. W., Wallraff, G. M., and Cha, J. N., Nat. nanotechnol. 5, 121 (2009).CrossRefGoogle Scholar
Jiang, K., Schadler, L. S., Siegel, R. W., Zhang, X., Zhang, H., and Terrones, M., J. Mater. Chem. 14, 37 (2004).CrossRefGoogle Scholar
Dovbeshko, G. I., Gridina, N. Y., Kruglova, E. B., and Pashchuk, O. P.. Talanta 53, 233 (2000).CrossRefGoogle Scholar
Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., and Bachas, L.G., Science 303, 62 (2004).CrossRefGoogle Scholar