Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:35:37.606Z Has data issue: false hasContentIssue false

Nanorings, Nanopillars and Nanospikes on Si(111) by Modified Nanosphere Lithography: Fabrication and Application

Published online by Cambridge University Press:  01 February 2011

Jefferson Rose
Affiliation:
Department of Chemistry and Biochemistry, University of California, Los Angeles 90095–1569
Delroy Baugh*
Affiliation:
Department of Chemistry and Biochemistry, University of California, Los Angeles 90095–1569
*
Get access

Abstract

Uniform arrays of nanopillars, nanospikes, nanorings and rings atop nanopillars were fabricated using modified nanosphere lithography on the Si(111) surface and observed using AFM and SEM. A self-assembled monolayer mask which utilized 450±10nm polystyrene spheres were used as an etch mask during a fabrication process of physical Ar+ ion bombardment followed by SF6 RIE to produce nanopillars with flat tops that could be as large as 210nm in height and 175nm in diameter. Nanospikes of approximately the same height were fabricated made with a FWHM of 250nm. The initial Ar+ ion bombardment step was varied to achieve up to 4 times faster etch rates and narrowed widths in the nanospikes. Both types nanostructures systems were “self-wired” which is an intrinsic result of this fabrication process. Self-wired nanorings and rings atop nanopillar structures were also fabricated using a two step etching process along with sonication. The nanorings had inner and outer diameters of 225±5nm and 175±5 nm, respectively and were up to 20nm in height and their nanowire connectivity could be made optional by a judicious choice of solvent for sonication. The self-wired Si nanostructures were also “dressed” with self-assembled Ge quantum dots. These Ge/Si nano-architectured structures possess the basic framework for fabricating novel nanoelectronic and nano-optoelectronic devices in the foreseeable future.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cao, G., 2004, Nanostructures and Nanomaterials: Synthesis, Properties and Applications (Imperial College Press).Google Scholar
2. Jacobs, H. O., Campbell, S. A. and Steward, M. G., Advanced Materials 14, 1553 (2002).Google Scholar
3. Whang, D., Jin, S. and Lieber, C. M., Nanoletters 3, 951 (2003).Google Scholar
4. Deckman, H. W. and Dunsmuir, J. H., Appl. Phys. Lett. 41, 377 (1982).Google Scholar
5. Hulteen, J. C. and Van Duyne, R. P., J. Vac. Sci. Technol. A, 13, 1553 (1995).Google Scholar
6. Haes, A. J., Haynes, C. L. and Van Duyne, R. P., Mat. Res. Soc. Symp. 636, D4.8.1 (2001).Google Scholar
7. Boneberg, J., Burmeister, F., Schäfle, C., and Leiderer, P., Langmuir 13, 7080 (1997).Google Scholar
8. Aizpurua, J., Hanarp, P., Sutherlan, D. S., Kall, M., Bryant, G. W. and Garcia De Abajo, F. J., Phys. Rev. Lett. 90, 057401–1 (2003).Google Scholar
9. Winzer, M., Kleiber, M., Dix, N. and Wiesendanger, R. Appl. Phys. A 63, 617 (1996).Google Scholar
10. Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
11. Kamins, T. I., Carr, E. C., Williams, R. S., and Rosner, S. J., J. Appl. Phys. 81, 211 (1997).Google Scholar
12. Wang, X., Jiang, Z.-M., H.-J. Z, , Lu, F., Huang, D., Liu, X., Hu, C., Chen, Y., Zhu, Z. and Yao, T. Appl. Phys. Lett. 71, 3543 (1997).Google Scholar
13. Ross, F. M., Tersoff, J. and Tromp, R. M., Phys. Rev. Lett. 80, 984 (1998).Google Scholar
14. Jin, G., Liu, J. L., Wang, K. L., Appl. Phys. Lett. Vol. 83, 2847 (2003).Google Scholar
15. Jin, G., Wan, J., Luo, Y.H., Liu, J.L. and Wang, K.L., Journal of Crystal Growth 227–228, 1100 (2001).Google Scholar
16. Yang, B., Woll, A.R., Rugheimer, P. and Lagally, M.G., Mat. Res. Soc. Symp. Proc. 715, A8.5.1 (2002).Google Scholar
17. Kitajima, T., Liu, B. and Leone, R., Appl. Phys. Lett. 80, 497 (2002).Google Scholar
18. Borgström, M, Zela, V and Seifert, W., Nanotechnology 14, 264267 (2003).Google Scholar
19. Kamins, T I, Stanley Williams, R and Basile, D P, Nanotechnology 10, 117 (1999).Google Scholar
20. Jin, G., Liu, J.L., Luo, Y.H. and Wang, K.L., Thin Solid Films 369, 49 (2000).Google Scholar
21. Kim, E. S., Usami, N. and Shiraki, Y., Appl. Phys. Lett. 72, 1617 (1998).Google Scholar
22. Zhong, Z. and Bauer, G., Appl. Phys. Lett. 84, (11) 1922 (2003).Google Scholar
23. Kamins, T. I., Ohlberg, D. A. A., Stanley Williams, R., Zhang, W. and Chou, S. Y., Appl. Phys. Lett. 74, 1773 (1999).Google Scholar
24. Hirai, A. and Itoh, K. M. Physica E. in press.Google Scholar
25. Schwarz-Selinger, T., Foo, Y. L., Cahill, David G., Greene, J. E., Phys. Rev. B 65, 125317–1 (2002).Google Scholar
26. Shiryaev, S. Y., Jensen, F., Hansen, J. L., Wulff, P. J. and Nylandsted, L. A., Phys. Rev. Lett. 78, 503 (1997).Google Scholar
27. Brunnera, K., Zhua, J., Miesnera, C., Abstreitera, G., Kienzle, O. and Ernst, F., Physica E 7, 881 (2000).Google Scholar
28. Tersoff, J., Teichert, C. and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
29. Schmidt, O. G., Jin-Phillipp, N. Y., Lange, C., Denker, U., Eberl, K., Schreiner, R., Gräbeldinger, H. and Schweizer, H., Appl. Phys. Lett. 77, 4139 (2000).Google Scholar
30. Kammler, M., Hull, R., Reuter, M. C. and Ross, F. M., Appl. Phys. Lett. 82, 1093 (2003).Google Scholar
31. Kawamura, M., Paul, N., Cherepanov, V., and Voigtländer, B., Phys. Rev. Lett. 91, 096102–1 (2003).Google Scholar
32. Lee, S. W. and Chen, L. J., Chen, P. S., Tsai, M.-J., Liu, C. W., Chien, T. Y. and Chia, C. T., Appl. Phys. Lett. 83, 5283 (2003).Google Scholar