Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:32:19.215Z Has data issue: false hasContentIssue false

Nanoporous Ni and Ni-Cu Fabricated by Dealloying

Published online by Cambridge University Press:  31 January 2011

Masataka Hakamada
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Materials Research Institute for Sustainable Development, Nagoya, Japan
Yasumasa Chino
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Materials Research Institute for Sustainable Development, Nagoya, Japan
Mamoru Mabuchi
Affiliation:
[email protected], Kyoto University, Kyoto, Japan
Get access

Abstract

Metallic nanoporous architecture can be spontaneously attained by dealloying of a binary alloy. The nanoporous architecture can be often fabricated in noble metals such as Au and Pt. In this study, nanoporous Ni, Ni-Cu are fabricated by dealloying rolled Ni-Mn and Cu-Ni-Mn alloys, respectively. Unlike conventional Raney nickel composed of brittle Ni-Al or Cu-Al intermetallic compounds, the initial alloys had good workability probably because of their fcc crystal structures. After the electrolysis of the alloys in (NH4)2SO4 aqueous solution, nanoporous architectures of Ni and Ni-Cu with pore and ligament sizes of 10–20 nm were confirmed by scanning electron microscopy and transmission electron microscopy. X-ray diffraction analyses suggested that Ni and Cu atoms form a homogeneous solid solution in the Ni-Cu nanoporous architecture. The ligament sizes of nanoporous Ni and Ni-Cu were smaller than that of nanoporous Cu, reflecting the difference between diffusivities of Ni and Cu at solid/electrolyte interface. Ni can reduce the pore and ligament sizes of resulting nanoporous architecture when added to initial Cu-Mn alloys.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Forty, A. J. and Durkin, P. Philos. Mag. A 42, 295 (1980).Google Scholar
2 Erlebacher, J. Aziz, M. J. Karma, A. Dimitrov, N. and Sieradzki, K. Nature 410, 450 (2001).Google Scholar
3 Hodge, A. M. Biener, J. Hayes, J. R. Bythrow, P. M. Volkert, C. A. and Hamza, A. V. Acta Mater. 55, 1343 (2007).Google Scholar
4 Hakamada, M. and Mabuchi, M. Scr. Mater. 56, 1003 (2007).Google Scholar
5 Kucheyev, S. O. Hayes, J. R. Biener, J. Huser, T. Talley, C. E. and Hamza, A. V. Appl. Phys. Lett. 89, 053102 (2006).Google Scholar
6 Xu, C. Su, J. Xu, X. Liu, P. Zhao, H. Tian, F. and Ding, Y. J. Am. Chem. Soc. 129, 42 (2007).Google Scholar
7 Kramer, D. Viswanath, R. N. and Weissmüller, J., Nano Lett. 4, 793 (2004).Google Scholar
8 Pugh, D. V. Dursun, A. and Corcoran, S. G. J. Mater. Res. 18, 216 (2003).Google Scholar
9 Liu, H. He, P. Li, Z. and Li, J. Nanotechnology 17, 2167 (2006).Google Scholar
10 Hakamada, M. and Mabuchi, M. Mater. Trans. 50, 427 (2009).Google Scholar
11 Hakamada, M. and Mabuchi, M. J. Alloy. Compd. 479, 326 (2009).Google Scholar
12 Yu, J. Ding, Y. Xu, C. Inoue, A. Sakurai, T. and Chen, M. Chem. Mater. 20, 4548 (2008).Google Scholar
13 Raney, M. U. S. Patent 1, 628,190 (1927).Google Scholar
14 Freel, J. Pieters, W. J. M. and Anderson, R. B. J. Catal. 14, 247 (1969).Google Scholar
15 Robertson, S. D. Freel, J. and Anderson, R. B. J. Catal. 24, 130 (1972).Google Scholar
16 Wainwright, M. S. and Trimm, D. L. Catal. Today 23, 29 (1995).Google Scholar
17 Smith, A. J. Munroe, P. R. Tran, T. and Wainwright, M. S. J. Mater. Sci. 36, 3519 (2001).Google Scholar
18 Hayes, J. R. Hodge, A. M. Biener, J. Hamza, A. V. and Sieradzki, K. J. Mater. Res. 21, 2611 (2006).Google Scholar
19 Okamoto, H. J. Phase Equilib. 19, 180 (1998).Google Scholar
20 Gokcen, N. A. J. Phase Equilib. 12, 313 (1991).Google Scholar
21 Villars, P. Prince, A. and Okamoto, H. Handbook of Ternary Alloy Phase Diagrams (ASM International, 1995) pp. 96759684.Google Scholar
22 Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, 1966).Google Scholar
23 Sieradzki, K. Dimitrov, N. Movrin, D. McCall, C. Vasiljevic, N. and Erlebacher, J. J. Electrochem. Soc. 149, B370 (2002).Google Scholar
24 Parida, S. Kramer, D. Volkert, C. A. Rösner, H., Erlebacher, J. and Weissmüller, J., Phys. Rev. Lett. 97, 035504 (2006).Google Scholar