Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:05:08.516Z Has data issue: false hasContentIssue false

Nanometer-scale Structural Relaxation in Zr-based Bulk Metallic Glass

Published online by Cambridge University Press:  01 February 2011

Jinwoo Hwang
Affiliation:
[email protected], University of Wisconsin-Madison, Materials Science and Engineeing, #202, 1509 University ave, Madison, WI, 53706, United States
Hongbo Cao
Affiliation:
[email protected], University of Wisconsin, Madison, Materials Science and Engineering, Madison, WI, 53706, United States
Paul M. Voyles
Affiliation:
[email protected], University of Wisconsin, Madison, Materials Science and Engineering, Madison, WI, 53706, United States
Get access

Abstract

We investigated the influence of annealing on the nanometer-scale medium-range order in Zr54Cu38Al8 bulk metallic glass using fluctuation electron microscopy. Fluctuation microscopy experiments probing structure at a length scale of 1 nm show that the as-cast Zr bulk metallic glass contains significant medium range order. That structure is unchanged by annealing at 87% of the glass transition temperature for 24 hours, although that anneal does significantly change the differential scanning calorimetry trace.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Voyles, P. M. and Abelson, John R., Solar Energy Materials & Solar Cells 78, 85113 (2003).Google Scholar
2. Miracle, D. B., Nature Materials 3, 697702 (2004).Google Scholar
3. Sheng, H.W., Luo, W. K., Alamgir, F. M., Bai, J. M., and Ma, E., Nature 439, 419425 (2006).Google Scholar
4. Hirata, Akihiko, Hirotsua, Yoshihiko, Nieh, T.G., Ohkubo, Tadakatsu, and Tanaka, Nobuo, Ultramicroscopy 107, 116123 (2007).Google Scholar
5. Spaepen, F., Scripta Materialia 54, 363367 (2006).Google Scholar
6. Taub, A. I. and Spaepen, F., Acta Metallurgica 28, 1781 (1980).Google Scholar
7. Slipenyuk, A. and Eckert, J., Scripta Materialia 50, 3944 (2004).Google Scholar
8. Fan, Cang, Liaw, P. K., Wilson, T. W., Dmowski, W., Choo, H., Liu, C. T., Richardson, J. W., and Proffen, Th., Applied Physics Letters 89, 111905 (2006).Google Scholar
9. Voyles, P. M., Gibson, J. M., and Treacy, M. M. J., Journal of Electron Microscopy 49, 259266 (2000).Google Scholar
10. Wang, D., Tan, H., and Li, Y., Acta Materialia 53, 29692979 (2005).Google Scholar
11. Sun, B.B., Wang, Y.B., Wen, J., Yang, H., Sui, M. L., Wang, J. Q., and Ma, E., Scripta Materialia 53, 805809 (2005).Google Scholar
12. Voyles, P. M., “Fluctuation Electron Microscopy of Medium-Range Order in Amorphous Silicon”, Dissertation (2001).Google Scholar
13. Ho, M.-Y., Gong, H., Wilk, G. D., Busch, B. W., Green, M. L., Voyles, P. M., Muller, D. A., Bude, M., Lin, W. H., See, A., Loomans, M. E., Lahiri, S. K., Räisänen, P. I., Journal of Applied Physics 93, 1477 (2003).Google Scholar
14. Stratton, W. G., Hamann, J., Perepezko, J. H., Voyles, P. M., Mao, X., and Khare, S. V., Applied Physics Letters 86, 141910 (2005).Google Scholar
15. Hufnagel, T. C., Fan, Cang, Ott, R. T., Li, J., and Brennan, S., Intermetallics 10, 11631166 (2003).Google Scholar
16. Puthoff, J. B. and Stone, D. S., this meetingGoogle Scholar