No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Nanometer-scale surface topology modification has been demonstrated using NSOM (near-field scanning optical microscope) delivered femto-second pulses. The ablation laser has a pulse width of 150 femto-second and wavelength of 387-nm. The laser pulses are coupled into the free end of a multimode optical fiber that a nanometer-size NSOM probe was fabricated on the other end with small orifice. The transmitted laser pulses from the probe orifice illuminates and machines the substrate surface when the probe is in near-field range of the substrate surface. The produced feature on Silicon surface is as least 200-nm deep with hole diameter around 200-nm. Near-field coupling of the laser has the potential to achieve ablation of feature size less than diffraction limit. Using NSOM delivery method also allows us to take advantage of nanometer metrology in precision surface ablation or other type of preformed surface modification. The ability of monitoring surface topology of substrate in real time enables us to accomplish the in-situ surface processing. We have demonstrated the technique of drilling 200-nm air holes on a pre-formed 600-nm wide wave guide. This method can be used to fabricate one-dimensional photonic crystal on a waveguide in ambient environment. The experiment design and performance evaluation will be discussed.