Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:44:04.052Z Has data issue: false hasContentIssue false

Nanomechanics of Thin Films

Published online by Cambridge University Press:  25 February 2011

R. V. Hoffman*
Affiliation:
Department of Physics, Case Western Reserve University Cleveland, Ohio 44106
Get access

Abstract

Recognition of the importance of the mechanical properties of thin deposited films has received increasing attention over the past decade. The film or near surface region must be treated as a material to understand its particular mechanical properties in terms of the unique microstructure present. A vapor condensed film often has an extremely small grain size and gives brittle behavior. It is not uncommon to form an impurity stabilized amorphous film during growth.

In this paper emphasis is placed on concepts and recent instrumentation for measurements of the stress during film deposition. This growth stress and its distribution results from the microstructure plus the mechanical constraints of the underlying material, and may be modified by the processing. Both elastic and plastic components are present and local deformation maps allow a reasonable level of modelling. Lacking in this approach are experimental material parameters for the film, near surface, or interfacial material. New data for the tensile properties of cast polystyrene and SiO films is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hoffman, R.W., in Physics of Thin Films, Vol.3, Hass, and Thun, , eds., (Academic Press, 1966).Google Scholar
2. Hoffman, R.W., in NATO Advanced Study Institute Series B (Plenum Press, 1976).Google Scholar
3. Murakami, M., in CRC Critical Reviews in Solid State and Materials Sciences, Schuele and Hoffman, eds. 11, 317 (1984).Google Scholar
4. Hoffman, R.W., in Mechanical Properties of Thin Films, AVS Short Course Notes, American Vacuum Society (1976) Revised (1983).Google Scholar
5. Chopra, K.L., in Thin Film Phenomena, (McGraw Hill, 1969).Google Scholar
6. Thornton, J.A., Ann. Rev. Mat. Sci. 7, 239 (1977).Google Scholar
7. Nye, J.F., Physical Properties of Crystals (Oxford University Press, London, 1960).Google Scholar
8. Kittel, C., Introduction to Solid State Physics (Wiley, 1976).Google Scholar
9. Smith, C.S., in Solid State Physics, Seitz, and Turnbull, , eds., Vol.6 (Academic Press, 1958).Google Scholar
10. Segmuller, A., Angilello, J., and LaPlaca, S.J., J. Appl. Phys. 51, 6224 (1980).Google Scholar
11. Murakami, M., J. Appl. Phys. 53, 3560 (1982).Google Scholar
12. Hoffman, R.W., Surface and Interface Analysis, 3, 62 (1981).Google Scholar
13. Hoffman, R.W., J. of Materials Sci., Mat. Sci. & Engineering 53, 37 (1982).Google Scholar
14. Sinha, A.K., Levinstein, H.J., and Smith, T.E., J. Appl. Phys. 49, 2423 (1978).Google Scholar
15. Roll, K., J. Appl. Phys. 47, 3224 (1976).Google Scholar
16. Ionic Systems, San Jose, CA 95131.Google Scholar
17. Jayne, T.D. and Hoffman, R.W., paper D-3–13 at International Conference on Metallurgical Coatings, San Diego (1986).Google Scholar
18. Pan, J.T. and Blech, I., J. Appl. Phys. 55, 8 (1984).Google Scholar
19. Pulker, H.K., Thin Solid Films, 89, 191 (1982).Google Scholar
20. Hoffman, R.W. and Thornton, J.A., V. Vac. Sci. Technol.Google Scholar
21. Abel, P.B. and Hoffman, R.W., J. Vac. Sci. Technol, A 1, 260 (1983); see also P.B. Abel, Ph.D. Thesis, CWRU (1985).CrossRefGoogle Scholar
22. Menter, J.W. and Pashley, D.W., Structure and Properties of Thin Films, Neugebauer, C.A., Newkirk, J.D., and Vermilyea, D.A. eds., (John Wiley & Sons, New York, 1959).Google Scholar
23. Neugebauer, C.A., J. Appl. Phys. 31, 1096 (1960).Google Scholar
24. Blakeley, J.M., J. Appl. Phys. 35, 1756 (1964).Google Scholar
25. Dahlgren, S.D., et al., Thin Solid Films, 40, 345 (1977).Google Scholar
26. Springer, R.W., Ott, N.L., and Catlett, D.S., J. Vac. Sci. Technol., 16, 878 (1978).Google Scholar
27. Yang, W.M.C., Tsakalakos, T., and Hilliard, J.E., J. Appl. Phys., 46, 876 (1977).Google Scholar
28. Matthews, J.W. and Klokholn, E., Mat. Res. Bull., 7213 (1972).Google Scholar
29. Murakami, M., Kuan, T.S., and Blech, I.A., Treatise on Materials Science and Technology, Vol.24, Herman, H., ed. (Academic. Press, New York, 1982).Google Scholar
30. Ronay, M., Philos. Mag., 40, 145 (1979).Google Scholar
31. Hoffman, R.W., Hagerling, C.W., Hasegawa, H., Andeen, C.G., and Geil, P.H., Thin Solid Films, 58, 377A (1979).Google Scholar
32. Microindentation Techniques, Blau, and Lawn, , eds. ASTM STP889 (1985).Google Scholar
33. Bengert, H. and Wagendristel, A., Rev. Sci. Instrum. 56, 1568 (1985).Google Scholar
34. Oliver, W.C., Hutchings, R., and Pethica, J.B., in Microindentation Techniques, Blau and Lawn, eds. ASTM STP889.Google Scholar
35. Nano Instruments, Inc., Knoxville, TN 37922.Google Scholar
36. Hoffman, R.W., Andeen, C.G., and Hagerling, C.W., Proc. 7th Intern. Vac. Congr. 2, 1769 (1977), Vienna, 1977.Google Scholar
37. Hoffman, R.W., Advances in Chemistry, J.L. Koenig, ed., 174, 25 (1979).Google Scholar
38. Ulan, M. and Hoffman, R.W., quoted in ref. 14.Google Scholar
39. Hoffman, R.V. Jr., M.S. Thesis, Case Western Reserve University (1986).Google Scholar