Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:04:18.755Z Has data issue: false hasContentIssue false

Nano-Mechanical Study of Mechanically Alloyed Zr-Cu-Al-Ni Glass Composite Containing Second-Phase ZrC Particles

Published online by Cambridge University Press:  01 February 2011

Germán Alcalá
Affiliation:
IFW Dresden, Institute for Metallic Materials, P.O. Box 27 00 16, D-01171 Dresden, Germany
Sonia Mato
Affiliation:
IFW Dresden, Institute for Metallic Materials, P.O. Box 27 00 16, D-01171 Dresden, Germany
Stefano Deledda
Affiliation:
IFW Dresden, Institute for Metallic Materials, P.O. Box 27 00 16, D-01171 Dresden, Germany
Martin Knieps
Affiliation:
SURFACE, Rheinstr.7, D-41836 Hückelhoven, Germany
Ude Hangen
Affiliation:
SURFACE, Rheinstr.7, D-41836 Hückelhoven, Germany
Jürgen Eckert
Affiliation:
TU Darmstadt, Material Science, Physical Metallurgy, Petersenstr. 23, D-64287 Darmstadt, Germany
Annett Gebert
Affiliation:
IFW Dresden, Institute for Metallic Materials, P.O. Box 27 00 16, D-01171 Dresden, Germany
Ludwig Schultz
Affiliation:
IFW Dresden, Institute for Metallic Materials, P.O. Box 27 00 16, D-01171 Dresden, Germany
Get access

Abstract

Metallic glasses exhibit generally high hardness and elastic modulus values at the expense of very limited plasticity. The incorporation of crystalline particles within an amorphous metallic matrix has been widely reported to improve the performance of these materials by reducing crack propagation. The present work analyzes the influence of nanometer-size ZrC particles on the nano-mechanical behavior of mechanically alloyed Zr55Cu30Al10Ni5 glassy matrix composites. The volume fraction of ZrC particles ranged from zero up to 20 vol. %, showing a critical change in the mechanical behavior between 10 and 20 vol. %, particularly in the elastic response.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, W.L., MRS Bulletin, 42 (October 1999)Google Scholar
2. Inoue, A., Acta Mater., 48, 277 (2000)Google Scholar
3. Seidel, M., Eckert, J. and Schultz, L., J. Appl. Phys., 77, 5446 (1995)Google Scholar
4. Gebert, A., Buchholz, K., Leonhard, A., Mummert, K., Eckert, J. and Schultz, L., Mater. Sci. Eng. A267, 294 (1999)Google Scholar
5. Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J. and Schultz, L., NanoStruct. Mater., 10, 805 (1998)Google Scholar
6. Fan, Cang, Ott, R.T. and Hufnagel, T.C., App. Phys. Lett., 81, 6, 1 (2002)Google Scholar
7. Szuecs, F., Kim, C.P. and Johnson, W.L., Acta Mater., 49, 1507 (2001)Google Scholar
8. Conner, R.D., Choi-Yim, H. and Johnson, W.L., J. Mater. Res., 14, 3292 (1999)Google Scholar
9. Gebert, A., Eckert, J., Schultz, L., Acta Mater., 46, 5475 (1998)Google Scholar
10. Doglione, R., Spriano, S., Battezzati, L., Nanostruct. Mater., 8, 447 (1997)Google Scholar
11. Moelle, C., Lu, I.-R., Sagel, A., Wunderlich, R.K., Perepezko, J.H. and Fecht, H.-J., Mater. Sci. Forum, 269, 47 (1998)Google Scholar
12. Eckert, J., Mater. Sci. Forum, 312–314, 3 (1999)Google Scholar
13. Alcalá, G., Mato, S., Skeldon, P., Thompson, G.E., Mann, A.B., Habazaki, H. and Shimizu, K., Surf. Coat. Techol., 173, 293 (2003)Google Scholar
14. Oliver, W.C. and Pharr, G.M., J. Mater. Res., 7, 1564 (1992)Google Scholar
15. Deledda, S., Eckert, J. and Schultz, L., Scr. Mater., 46, 31 (2002)Google Scholar
16. Alcalá, G., PhD Thesis, University of Manchester Institute of Science and Technology (2002)Google Scholar