Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T13:25:41.966Z Has data issue: false hasContentIssue false

Nanoindention studies of DC sputtered Cu and Cu/Cr thin films

Published online by Cambridge University Press:  21 March 2011

G. Wei
Affiliation:
Department of Metallurgical and Materials Engineering and Center for Materials for InformationTechnology, The University of Alabama, Tuscaloosa, AL 35487-0209, U.S.A.
J. Du
Affiliation:
Department of Metallurgical and Materials Engineering and Center for Materials for InformationTechnology, The University of Alabama, Tuscaloosa, AL 35487-0209, U.S.A.
A. Rar
Affiliation:
Department of Metallurgical and Materials Engineering and Center for Materials for InformationTechnology, The University of Alabama, Tuscaloosa, AL 35487-0209, U.S.A.
J. A. Barnard
Affiliation:
Department of Metallurgical and Materials Engineering and Center for Materials for InformationTechnology, The University of Alabama, Tuscaloosa, AL 35487-0209, U.S.A.
Get access

Abstract

The nanoindentation behavior of DC magnetron sputtered 10 nm Cu and 10 nm Cu/2 nm Cr thin films deposited on Si (100) has been studied using a Hysitron nanomechanical system. X- ray diffraction and X-ray reflectivity were used to measure the film structure and film thickness, respectively. The grain size and orientation of Cu and Cu/Cr thin films were measured by TEM. Atomic force microscopy (AFM) was used to evaluate the surface morphology and roughness. At the same load, the nanoindentaion displacement of Cu/Cr is smaller than that for Cu, i.e., the 2nm thick Cr underlayer enhances the hardness of Cu. X-ray, TEM, and AFM results show that the grain size of Cu/Cr (< 15 nm) is actually larger than Cu (∼ 3 nm) indicating that the inverse Hall-Petch relationship may be operative.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Acharya, B. Ramamurthy; Abarra, E.N.; Phillips, G.N.; Suzuki, T.; Adachi, K.; Kitagaki, N.; Aihara, M., IEEE Transactions on Magnetics, 34, 15941596 (1998).Google Scholar
2. Gong, Heng; Yang, Wei; Lambeth, David N.; Rao, Maithri; Laughlin, David E. IEEE Transactions on Magnetics, 34, 16121614 (1998).Google Scholar
3. Ali, N., Ahmed, W., Rego, C. A. and Fan, Q. H., Diamond and Related Materials, 9, 14641470 (2000).Google Scholar
4. Nieman, G. W., Weertman, J. R. and Siegel, R. W., Scripta Metall., 23, 2013 (1989).Google Scholar
5. Koch, C. C. and Cho, Y. S., Nanostruct. Mater. 1, 207 (1992).Google Scholar
6. Lu, K., Wei, W. D. and Wang, J. T., Scripta Metall.Mater. 24, 2319 (1990).Google Scholar
7. Gertsman, V. Y., Hoffmann, M., Gleiter, H. and Borringer, R., Acta Metall. Mater. 42, 3595 (1994).Google Scholar
8. Doerner, M. F., Nix, W.D., J. Mater. Res. 1, 601609 (1986).Google Scholar
9. Oliver, W. C., Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).Google Scholar
10. Ohring, Milton, The Materials Science of Thin Films (Academic Press, San Diego, 1991) pp.564566.Google Scholar
11. Li, S., Sun, L. and Wang, Z., Nanostruct. Mater. 2, 653 (1993).Google Scholar
12. Sheppard, K. G. and Nakahara, S., Process. Advanced Mater. 1, 27 (1991).Google Scholar
13. Thornton, J. A., J. Vac. Sci. Technol. A, 4, 3059 (1986).Google Scholar
14. Westra, K. L., Thomson, D. J., Thin Solid Films 257, 15 (1995).Google Scholar
15. Hall, E. O., Proc. Phys. Soc. B64, 747 (1951)Google Scholar
16. Petch, N. J., J. Iron Steel Inst. 174, 25 (1953).Google Scholar
17. Hall, E. O., Nature 173, 948 (1954).Google Scholar
18. Artz, E., Acta mater. 46, 5617 (1998).Google Scholar
19. Volpp, T., Goring, E., Kuschke, W.-M. and Arzt, E., Nanostruct. Mater. 8, 855 (1997).Google Scholar
20. Konstantinidis, D. A. and Aifantis, E. C., Nanostruct. Mater. 10, 1111 (1998).Google Scholar
21. Song, H. W., Guo, S. R. and Hu, Z. Q., Nanostruct. Mater. 11, 203 (1999).Google Scholar
22. Youngdahl, C. J., Sanders, P. G., Eastman, J. A., Weertman, J. R., Scripta. Mater. 37, 809 (1997).Google Scholar
23. Chokshi, A. H., Rosen, A., Karch, J. and Gleiter, H., Scripta Metall., 23, 1679 (1989).Google Scholar
24. Scattergood, R. O. and Koch, C. C., Scripta Metall.Mater. 27, 1195 (1992).Google Scholar
25. Siegel, R. W., Nanostruct. Mater. 2, 121 (1994).Google Scholar
26. Lu, K. and Sui, M. L., Scripta Metall. Mater. 28, 1465 (1993).Google Scholar